PATING KA BA?
An Identification Guide to Sharks, Batoids and Chimaeras of the Philippines
PATING KA BA?
An Identification Guide to Sharks, Batoids and Chimaeras of the Philippines

Moonyeen Nida R. Alava
Joe Pres A. Gaudiano
Jean Asuncion T. Utzurrum
E. Emily C. Capuli
Ma. Theresa R. Aquino
M-May A. Luchavez-Maypa
Mudjekeewis D. Santos
Ms. Moonyeen Nida R. Alava (M.Sc.), an independent Elasmobranch Specialist to the Marine Wildlife Watch of the Philippines under the DENR-GIZ ACCCoast Project, designed the 1998-2001 WWF Elasmobranch Biodiversity and Conservation Project and co-authored the 2005 Checklist of Philippine Cartilaginous Fishes. She worked with various institutions to include Silliman University, CI-Philippines and the Global Marine Species Assessment - Coral Triangle advocating for marine threatened species conservation. She is currently based in Quezon City. Email: mnralava@gmail.com.

Mr. Joe Pres A. Gaudiano (B.Sc.) has more than 15 years of intensive involvement in Philippine elasmobranch biodiversity studies, initially as a Research Assistant of the 1998-2001 WWF Elasmobranch Biodiversity and Conservation Project in Silliman University and later as Project Manager in various project-based field researches in WWF– Philippines. He is currently an independent researcher on marine resources management and is based in Quezon City. Email: adon_jpag@yahoo.com.

Ms. Jean Asuncion T. Utzurrum (B.Sc.), Research Assistant to MMWP’s Marine Wildlife Conservation Management Project with focus on knowledge product development on whale sharks and elasmobranchs, is currently a graduate student specializing on ray fisheries at the Silliman University – Institute of Environmental and Marine Sciences, Bantayan, Dumaguete City, 6200 Philippines. Email: jeanutz@gmail.com.

Ms. Estelita Emily Capuli (M.Sc.), a Research Associate of the FishBase Information and Research Group, Inc., with more than 20 years of experience with FishBase, continues to update the checklists of the Philippines and the Indo-Pacific region, encodes taxonomic and species (biological and spatial) information, and is responsible for the synchronization of FishBase and the Catalog of Fishes with the help of Dr. Nicolas Bailly and Dr. William N. Eschmeyer. Email: e.capuli@fin.ph.

Dr. Theresa R. Aquino (D.V.M.), an independent consultant to the Tubbataha Reefs Natural Park on marine threatened species and habitat conservation and management research, is also a Board Member of the Marine Wildlife Watch of the Philippines. Email: dugongdoc@gmail.com.

Ms. M-May Luchavez-Maypa (B.Sc.) was the Project Manager of the 1998-2001 WWF Elasmobranch Biodiversity and Conservation Project in Silliman University instrumental in acquiring valuable material from local fish markets and landing sites as well as in establishing a data baseline of sharks, rays and chimaeras. She is currently based in Dumaguete City. Email: maymaypa@yahoo.com.

Dr. Mudjekeewis D. Santos (Ph.D.), cited for his research and development work on genetics, biotechnology and resource assessment of Philippine aquatic species that includes chondrichthyan fishes, is currently the Scientist 1 of the Bureau of Fisheries and Aquatic Resources - National Fisheries Research and Development Institute, 101 Mother Ignacia St., Quezon City 1100. Email: mudjesantos@gmail.com.
Numerous individuals and institutions have helped in the compilation and development of this book. In particular, the authors acknowledge the support of lead institutions in the 1998-2001 Elasmobranch Biodiversity and Conservation Project, namely, World Wide Fund for Nature (WWF)-Philippines and WWF-USA, Silliman University Institute of Environmental and Marine Sciences (SU-IEMS), and the Bureau of Fisheries and Aquatic Resources (BFAR), for having supported the first dedicated project that effectively established a collection of specimens from fish landing and market sites and a data baseline of sharks, batoids and chimaeras deposited at the Dr. Angel C. Alcala Environment and Marine Science Laboratories in Dumaguete, Negros Oriental and the Philippine National Museum in Manila.

The authors also wish to thank Dr. Peter S. Last and Dr. John D. Stevens of the Commonwealth Scientific Industrial Research Organisation (CSIRO) Marine Research (Hobart, Australia) and Dr. Leonard Joseph Victor Compagno of the Shark Research Center, South African Museum (Cape Town, South Africa), for providing significant support and resources in the conduct of taxonomic and biological workshops and training sessions for the 1998-2001 Elasmobranch Project Team and partners and the validation of voucher specimens in the collection; Dr. Gavin J.P. Naylor of the Florida State University and Dr. William White of CSIRO for providing helpful comments on selected species; and Ms. Andy Oliver, formerly of WWF-USA, for assisting in an early draft of this document.

Much of the work after the WWF-SU Elasmobranch Project were done independently by the authors in various capacities, with support of a number of colleagues and friends. We are grateful for the technical and administrative support of the leaders and staff of the following institutions, namely: the National Fisheries Research and Development Institute (NFRDI), Director Melchor Tayamen, Mr. Noel Barut, Mr. Joseph Rayos, Ms. Aron Alcantara, and Mr. John de la Peña; BFAR Fisheries Regulatory and Quarantine Division (FRQD), Atty. Annaliza Vitug and Mr. Edwyn Alesna; BFAR Region 6, Mr. May Guanco and Ms. Sheryl Mesa; the Marine Wildlife Watch of the Philippines, Director Arnel Andrew S.P. Yaptinchay and Ms. Ichie Albea; the SU-IEMS, Dr. Janet Estacion, Dr. Hilconida P. Calumpong, Ms. Clarissa T. Reboton, Ms. Crystelle Dayot, Ms. Pablina Cadiz, Ms. Jacinta Lucanas, Mr. Angelico Jose Tiongson and former project staff member Mr. Brian R. Uypitching; the Tubbataha Management Office, Protected Area Superintendent Angelique M. Songco, Mr. Rowell C. Alarcon, Mr. Segundo F. Conales Jr., and Mr. Roy P. Magbanua; the FishBase Information and Research Group (FIN), Dr. Nicolas Bailly, Executive Director Mary Ann P. Bimbao, Ms. Rachel C. Atanacio, Ms. Ma. Josephine France Rius-Barile.

We also received additional field photos from colleagues from partner institutions. We are particularly grateful to the project leaders and field staff of the National Stock Assessment Program in the regions, particularly from Aparri, Cebu, General Santos, Negros-Panay, Quezon, Mariveles, and Zamboanga. We also thank Mr. Alessandro Ponzo of LaMaVe/Physalus.org for the Mobula photos; Mr. Steve de Neef for the underwater whale shark and pelagic thresher shark photos; and the Friends of Tubbataha, particularly Mr. Heinz Rebmann, Ms. Kayla Ledesma, Seidenhai, Ms. Lene and Mr. Claus Topp for the underwater photos of Tubbataha sharks and rays; and Ms. Carlie Devine of CSIRO for enhanced images of selected photos. In the absence of representative images, we also acknowledge Food and Agriculture Organization of the United Nations (UN-FAO) for the use of illustrations and line drawings representing families and/or species. We also thank Ms. Jenica Dizon and Ms. Hannah Fatima P. Ebro for assistance in the initial artwork and layout design studies, Mr. Harold Emnace for technical advice and assistance on final product, Ms. Anna Oposa and Ms. Michelle Encomienda for proofreading of selected pages.

Most importantly, we also acknowledge the DENR-GIZ ACCCoast Small Grants Program for supporting the development of this book under the Marine Wildlife Watch of the Philippines, particularly: the DENR Biodiversity Management Bureau (BMB), Director Theresa Mundita S. Lim, Asst. Director Jacobo Meimban, Dr. Vincent Hilomen, Mr. Carlo Custodio, Ms. Lynette Laroya, and Ms. Angelita Meniado; and the GIZ ACCCoast Project Team, Chief Adviser Mr. Patrick Schwab, Mr. Terence Dacles, Ms. Florence Morales, Ms. Reina Villanueva, Ms. Dorotea Caayao and Ms. Stella Estecomin for making project resources available. The project is part of the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety.
Sharks and their relatives, the rays, skates and chimaeras, were previously considered to be of low economic value to large-scale commercial fisheries. In recent years, sharks have gained commercial importance to large-scale commercial and artisanal fisheries. They are increasingly targeted for their meat, skin, cartilage, teeth, jaws, liver/liver oil, and even other internal organs. Demand for sharks and sharks products in the past 30-40 years has resulted in an increasing number of species threatened with extinction due to a combination of factors from over-exploitation, degradation of important habitats (i.e., nursery and breeding grounds) from development and pollution compounded by the effects of a changing climate.

Consequently, there is now increasing concern about the rise of shark catches and the impact this has for some shark species populations. There is a need to balance fishing efforts and resource exploitation with conservation and management measures to attain sustainability of our marine fishery resources.

As reported in the Philippine National Plan of Action for the Conservation and Management of Sharks (NPOA-Sharks), most if not all of possibly 160 or more cartilaginous fish species reported to occur in our waters factor either in directed/targeted catch or incidental by-catch of commercial and/or municipal fisheries. Yet, there is limited reporting record on each of these species nationwide, particularly in terms of species-specific catch and effort, landing volume and trade data. There is also a serious lack of information on the biological parameters of shark species, on the identification of most species, and on the capacity to manage the resource as a whole. Such limitation on our knowledge of sharks and of the practices employed in shark fisheries in many of our fishing grounds is hindering us in providing appropriate management measures on the ground.

To improve knowledge on the state of shark stocks and facilitate the collection of the necessary information, adequate resources and support system are required for research and management.

Sharks and its relatives are characterized by K-selected life history traits such as slow growth, late sexual maturity, low fecundity, low natural mortality, and long life resulting in low rates of population increase. Due to these character traits and many other complex spatial structures such as size/sex segregation and seasonal migration, sharks often have a low stock-to-recruitment relationship and long stock recovery times when overfished. Thus, these fishes are highly vulnerable to overexploitation.

This book “Pating Ka Ba? An Identification Guide to Sharks, Batoids and Chimaeras of the Philippines” is long overdue. There is a need to improve the management of directed fisheries of sharks and its relatives, as well as certain multispecies fisheries in which they constitute as by-catch. This identification guide is a useful reference to enhance our understanding on these species and our capacity to manage them.

Atty. Asis G. Perez
Director
Bureau of Fisheries and Aquatic Resources
Table of Contents

Title Page i
About the Authors & Contributors ii
Acknowledgments iii
Foreword iv
Table of Contents v

1 Introduction

- What is a fish? 1
- How are fishes classified? 1
- What are the two types of fishes? 3
- What are cartilaginous fishes? 4
- What are true sharks? 4
- What are batoids? 5
- What are chimaeras? 5
- Why this book? 6
- How to use this book 7

2 Terminologies and Measurements

- Shark terminology and measurements 9
- Batoid terminology and measurements 10
- Chimaera terminology and measurements 11

3 Key to the Orders of Cartilaginous Fishes 13

4 True Sharks (Superorders Galeomorphii & Squalomorphii) 17

Galeomorph Sharks

- Carcharhiniformes (Ground Sharks) 18
 - Key to Families of the Order Carcharhiniformes 19
 - Carcharhinidae (Requiem Sharks) 21
 - Hemigaleidae (Weasel Sharks) 41
 - Proscylliidae (Finback Catsharks) 44
 - Pseudotriakidae (False Catsharks) 46
 - Scyliorhinidae (Catsharks) 48
 - Sphyrnidae Sharks (Hammerheads) 54
 - Triakidae (Houndsharks) 59

Heterodontiformes (Bullhead Sharks)

- Heterodontidae (Bullhead Sharks) 62

Lamniformes (Mackerel Sharks)

- Key to Families of the Order Lamniformes 66
Alopiidae (Thresher Sharks)
- Page 68

Cetorhinidae (Basking Sharks)
- Page 72

Lamnidae (Mackerel Sharks)
- Page 73

Megachasmidae (Megamouth Sharks)
- Page 76

Pseudocarchariidae (Crocodile Sharks)
- Page 78

Orectolobiformes (Carpet Sharks)
- Page 79

Key to Families of the Order Orectolobiformes
- Page 80

- Ginglymostomatidae (Nurse Sharks)
 - Page 82

- Hemiscylliidae (Longtailed Carpetsharks)
 - Page 84

- Orectolobidae (Wobbegongs)
 - Page 87

- Parascylliidae (Collared Carpetsharks)
 - Page 88

- Rhincodontidae (Whale Sharks)
 - Page 90

- Stegostomatidae (Zebra Sharks)
 - Page 92

Squalomorph Sharks
- Page 94

Hexanchiformes (Cow and Frilled Sharks)
- Page 95

- Hexanchidae (Sixgill and Sevengill Sharks)
 - Page 95

Pristiophoriformes (Saw Sharks)
- Page 99

- Pristiophoridae (Saw Sharks)
 - Page 99

Squaliformes (Dogfish Sharks)
- Page 100

Key to the Families of Squaliformes
- Page 100

- Centrophoridae (Gulper Sharks)
 - Page 103

- Dalatiidae (Kitefin Sharks)
 - Page 107

- Echinorhinidae (Bramble Sharks)
 - Page 111

- Etmopteridae (Lantern Sharks)
 - Page 112

- Squalidae (Dogfish Sharks)
 - Page 115

Squatiniformes (Angelfish Sharks)
- Page 116

- Squatinidae (Angelfish Sharks)
 - Page 116

5 Batoids
- Page 117

Key to Suborders of Order Rajiformes
- Page 119

Myliobatoidei (Stingrays)
- Page 122

Key to the Families of Suborder Myliobatoidei
- Page 124

- Dasyatidae (Whiptail Stingrays)
 - Page 126

- Gymnuridae (Butterfly Rays)
 - Page 138

- Hexatrygonidae (Sixgill Stingrays)
 - Page 141

- Mobulidae (Devil Rays)
 - Page 143

- Myliobatidae (Eagle Rays)
 - Page 151
<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plesiobatididae (Giant Stingarees)</td>
<td>153</td>
</tr>
<tr>
<td>Rhinopteridae (Cownose Rays)</td>
<td>155</td>
</tr>
<tr>
<td>Platyrhinoidei (Fanrays and Thornbacks)</td>
<td>157</td>
</tr>
<tr>
<td>Platyrhinidae (Fanrays and Thornbacks)</td>
<td>157</td>
</tr>
<tr>
<td>Pristoidei (Sawfishes)</td>
<td>158</td>
</tr>
<tr>
<td>Pristidae (Modern Sawfishes)</td>
<td>158</td>
</tr>
<tr>
<td>Rajoidei (Skates)</td>
<td>162</td>
</tr>
<tr>
<td>Key to Families of the Suborder Rajoidei</td>
<td>163</td>
</tr>
<tr>
<td>Anacanthobatidae (Smooth Skates)</td>
<td>164</td>
</tr>
<tr>
<td>Arhynchobatidae (Softnose Skates)</td>
<td>166</td>
</tr>
<tr>
<td>Rajidae (Hardnose Skates)</td>
<td>167</td>
</tr>
<tr>
<td>Rhinobatoidae (Guitarfishes)</td>
<td>169</td>
</tr>
<tr>
<td>Rhinobatidae (Guitarfishes)</td>
<td>169</td>
</tr>
<tr>
<td>Rhinoidei (Shark Rays)</td>
<td>171</td>
</tr>
<tr>
<td>Rhinidae (Shark Rays)</td>
<td>171</td>
</tr>
<tr>
<td>Rhynchobatoidei (Wedgefishes)</td>
<td>173</td>
</tr>
<tr>
<td>Rhynchobatidae (Wedgefishes)</td>
<td>173</td>
</tr>
<tr>
<td>Torpedinoidei (Electric Rays)</td>
<td>175</td>
</tr>
<tr>
<td>Keys to Families of Torpedinoidei</td>
<td>176</td>
</tr>
<tr>
<td>Narcinidae (Numbfishes)</td>
<td>177</td>
</tr>
<tr>
<td>Narkidae (Sleeper Rays)</td>
<td>179</td>
</tr>
<tr>
<td>Torpedinidae (Torpedo Rays)</td>
<td>180</td>
</tr>
<tr>
<td>6 CHIMAERAS</td>
<td>181</td>
</tr>
<tr>
<td>Chimaeriformes (Chimaeras)</td>
<td>181</td>
</tr>
<tr>
<td>Chimaeridae (Shortnose Chimaeras)</td>
<td>181</td>
</tr>
<tr>
<td>Glossary</td>
<td>183</td>
</tr>
<tr>
<td>Annexes</td>
<td>186</td>
</tr>
<tr>
<td>Annex 1. Philippine Cartilaginous Fish Species in the IUCN Red List, 2014</td>
<td>186</td>
</tr>
<tr>
<td>Annex 2. Cartilaginous Fish Species in the CITES Appendices (cites.org)</td>
<td>189</td>
</tr>
<tr>
<td>Bibliography</td>
<td>190</td>
</tr>
</tbody>
</table>
WHAT IS A FISH?

To most people, this may sound like a simple question that needs no answer. Most fish are readily recognizable as fish.

Fishes are the most numerous and diverse of the major groups of animals with backbones (also referred to as vertebrates). Currently, FishBase, a global information on fishes, records nearly 33,000 species (www.fishbase.org) described so far. This number excludes those that may have been discovered but not described yet (the so-called “new” to science). Fishes survive and dominate the marine and freshwater environments of the world through a variety of morphological, physiological and behavioural adaptations. It is the physical and chemical characteristics of water in these environments that influence the functional design of a fish.

So, what is a fish? The term fish is a convenient term used to refer to a diverse group of animals living in aquatic environments generally characterized by the presence of vertebrae protecting the spinal cord, gills (instead of lungs) to breathe underwater, paired fins that aid in locomotion, scales covering their bodies, and, yes, a brain protected by a braincase and a head region with eyes, teeth, and other sensory organs. For a more technical description of a fish, reading ichthyology books is advised.

A typical fish is shown above. And yes, once you see one, you have probably seen most (but perhaps not all).

HOW ARE FISHES CLASSIFIED?

With these many fishes in the world, the challenge is how they are classified. Classification is a means of cataloguing living organisms, plants and animals alike, based on similarities in external and internal structure. The system was used to group superficially similar organisms (i.e., Linnean classification), but with the advent of evolutionary science, it has been modified to reflect the evolutionary history and relationships of organisms (or phylogenetic classification) within a group in a hierarchical sense.

What is presented here follows the Linnean hierarchical system that classifies organisms into seven main ranks defined by the international nomenclature codes: kingdom, phylum, class, order, family, genus, and species. Ranks between the seven main ones are made by adding prefixes...
such as “super-”, “sub”, or “infra-”. Ranks are somewhat arbitrary, but hope to encapsulate the
diversity contained within a group. Each rank, from kingdom down to genus level, is assigned a
single scientific name often followed by the name of the person who originally described it and
the year it was first described.

At the species level, the scientific name follows the binomial system of classification consisting
of two italicised words: the first is the name of the genus and starts with a capital letter and the
second is the unique species name and is not capitalized. The scientific name of the species is
often followed by the name of the scientific authority (i.e., person who originally described the
species) and the year it was first described. Species sometimes get moved from one genus to
another. If the species is subsequently placed in a newer genus the scientific authority is put in
parentheses (i.e., *Rhincodon typus* (Smith, 1828) from *Rhiniodon typus* Smith, 1828).

Species names are unique and thus are used in preference to common names which vary from
place to place. Efforts are now being initiated for the use of a standard common name for each
species to improve data collection.

Some species may have more than one scientific name (i.e., synonyms) but only one of these
(usually the oldest) is valid. The older name takes precedence over the newer name, which then
becomes invalid (or referred to as a junior synonym). The naming of fish follow the standards
set by the International Commission on Zoological Nomenclature.

The information used in classifying fishes comes largely from detailed taxonomic studies,
particularly the careful descriptions of species based on at least four of the basic methods such
as: morphometric measurements, any standard measurements that can be made on a fish,
such as total length, standard length, tail length, disc width, body depth, may be expressed as
ratios to the total or standard length; meristic traits, include anything on a fish which can be
counted, such as fin rays and spines, lateral line pores; anatomical characteristics, refers to
body shape, positions of fins, presence or absence of special features such as claspers in males;
color patterns which are usually species specific but may change with age, the time of day, or
the environment in which the fish is found.

With the advent of newer technology to further describe the species and/or its relationships
with other fishes, other tools such as biochemical, molecular and genetic analysis are used. The
classification of cartilaginous fishes, for example, has undergone some major revisions in recent
years brought about by newer systematic paradigms supported by the use and application of
newer technology.
Taxonomy is a dynamic field, continually changing to keep up with new discoveries about species and newer ideas on the interrelationships of these species. It is difficult to keep up with systematic changes and the reworking of taxonomic groups. This constant change in names as applied to fishes is one of the most frustrating aspects for anyone who is not a taxonomist. For purposes of this book, and unless stated otherwise, scientific names as presented in the Checklist of Philippine Chondrichthyes by Compagno et al. (2005) is followed.

What are the two types of fishes?

A bony fish (left photo: bangus) and a cartilaginous fish (right photo: whale shark). Photos by: JE Randall /FishBase (left); S. De Neef (right).

Fishes are generally divided into two major groups based on the type of skeleton they have: Class Osteichthyes and Class Chondrichthyes. Osteichthyes have a skeleton made of bone and thus are referred to as “bony fishes”. Bony fishes are also collectively called as “teleost” which is shortened version for Teleostomi. Chondrichthyes have a cartilaginous skeleton without true bones (except perhaps in ancestral forms) and thus are referred to as “cartilaginous fishes”.

Additional differences between bony fishes and cartilaginous fishes are often cited in terms of: types and origin of scales; skull elements and numbers; attachment of the upper jaw to the skull; the presence or absence of pharyngeal jaws (or secondary set of jaws), gill cover, ribs; location of mouth and nostrils, to name a few. A comparative summary of the two fish types is shown in the table above.

<table>
<thead>
<tr>
<th>SKELETAL PARTS</th>
<th>BONY FISHES</th>
<th>CARTILAGINOUS FISHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeleton</td>
<td>‘Ossified’ or calcified</td>
<td>Cartilage (flexible connective tissue)</td>
</tr>
<tr>
<td>Skull & skull parts</td>
<td>63 bones. with sutures</td>
<td>10 cartilaginous elements; no sutures</td>
</tr>
<tr>
<td>Secondary set of jaws</td>
<td>Yes (pharyngeal jaws)</td>
<td>No</td>
</tr>
<tr>
<td>Teeth</td>
<td>Attached to jaws</td>
<td>Continually replaced and embedded in gums</td>
</tr>
<tr>
<td>Gill Plate</td>
<td>Yes (operculum)</td>
<td>None (gills exposed and visible)</td>
</tr>
<tr>
<td>Ribs</td>
<td>pleural ribs</td>
<td>None</td>
</tr>
<tr>
<td>Scales</td>
<td>“ctenoid or cycloid”</td>
<td>Tooth like scales (or dermal denticles)</td>
</tr>
<tr>
<td>Mouths and nostrils</td>
<td>Side of head</td>
<td>Underside of head</td>
</tr>
<tr>
<td>Pelvic claspers in males</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Swim bladder</td>
<td>Present</td>
<td>Absent</td>
</tr>
</tbody>
</table>

Comparative features of bony fishes and cartilaginous fishes.
What are cartilaginous fishes?

Cartilaginous fishes (Class Chondrichthyes) belong to an ancient group of fishes that evolved for over 400 million years. Living representatives are grouped into two main subclasses, namely, the Subclass Elasmobranchii (sharks, skates and rays) and the Subclass Holocephali (chimaeras).

The classification of Subclass Elasmobranchii is still a subject of continuous debate but they are generally divided into two superorders, namely, Galeomorphii and Squalomorphii.

- Superorder Galeomorphii includes four orders, the Heterodontiformes (bullhead sharks), Lamniformes (mackerel sharks), Orectolobiformes (carpet sharks), and Carcharhiniformes (ground sharks). Members of this group are also referred to as galeomorph, galea or galean sharks.
- Superorder Squalomorphii includes five orders the Hexanchiformes (cow and frilled sharks), Squaliformes (dogfish sharks), Squatiniformes (angel sharks), Pristiophoriformes (sawsharks), and Rajiformes (batoids). Members of this group are also referred to as squalomorph sharks.

Based on external characteristics, Subclass Elasmobranchii are traditionally segregated into two groups, namely, as true sharks and batoids (also collective referred to as “elasmobranchs”).

The Subclass Holocephali is represented by only one surviving group which is the order Chimaeriformes, also known as the modern chimaeras.

What are true sharks?

The “true” sharks are generally characterized with a fusiform body shape (i.e., spindle-like shape that is wide in the middle and tapers at both ends) and five to seven gill openings located at the sides of the head (or laterally positioned). Some shark taxonomists sometimes refer to true sharks as “non-batoids” (or the flat sharks). The true sharks have 1-2 dorsal fins (with or without spines), usually an anal fin (although absent in some species), and most have a well-developed caudal fin for swimming. Features important for identifying sharks are color, body shape, fin size and position, and tooth shape and number.

Shark sizes may range from 20 cm (e.g., dwarf lantern sharks) to 20 m (e.g., whale sharks). Some species are planktivores (e.g., megamouth sharks, whale shark) while most are carnivores, predatory and at the top of the food chain (e.g., great white, mako shark). About 70% of sharks bear live young (also known as viviparity, a reproductive method to care for their brood inside the female’s body resembling that of mammal, e.g. lemon sharks), while the rest lay eggs protected by horny cases (also known as oviparity, e.g., bamboo sharks).

Globally, more than 30 families are represented by close to 500 living species of sharks worldwide. In the Philippines, about 26 families are represented by at least 95 shark species.

* Previously, extant (=living) elasmobranchs were subdivided into two major groups. Selachii (sharks) and Batoidea (rays), but phyletic studies suggest that the batoids are best included as a large and diverse order of ‘flat sharks’ (Rajiformes) within the Squalomorphii. The batoids (Order Rajiformes) have been diversely allocated with respect to the previous taxonomic organizations. For practical reasons, batoids are discussed separately in this book (i.e., Chapter 5).
What are batoids?

Batoids are the skates and rays generally characterized with a disc-like body which is dorso-ventrally (i.e., top-bottom) flattened and five to six gills openings located underside of head (or ventrally positioned). They differ from “true” sharks in having greatly enlarged often wing-like pectoral fins (thus the reference to the group as “winged sharks”) attached to the head in front of the gill openings. Their pectoral fins and body together often form a large structure which is referred to as the “disc”. They have one or two dorsal fins (occasionally none) without fin-spines, a thin often whip-like tail, and no anal fin. Features important for identifying batoids are color, disc and tail shape, structure of oro-nasal (i.e., mouth-nose) region, dorsal fin position, and the distribution and shape of dermal thorns and denticles.

Batoid sizes may range from 25 cm to 10 m (e.g., manta ray). As with true sharks, some pelagic species are planktivores, others predatory, feeding largely on invertebrates or small fishes, but many are scavengers. Skates are oviparous while rays bear live young, some with placental-like connection between female and embryo. Skates and rays are of considerable commercially importance for food. Since most are found nearshore, they factor in a number of nearshore fisheries operations and are thus threatened by over-exploitation.

Batoids belong to the Order Rajiformes which is further divided into seven suborders, namely, Pristoidei (sawfishes), Rhinoidei (shark rays), Rhynchobatoidei (wedgefishes), Rhinobatoidei (guitarfishes), Platyrhinoidei (fanrays and thornbacks), and Rajoidei (skates), and Myliobatoidei (stingrays).

Globally, over 20 batoid families are represented by more than 600 living species; most are marine species, a few live in freshwater environment. In the Philippines, about 17 families are represented by at least 67 batoid species.

What are chimaeras?

Chimaeras are also known as ratfishes, ghostfishes, spookfishes, elephantfishes, or silversharks. They belong to the Subclass Holocephalii and are characterized by a large head, scale-less skin, a long sharp spine on the leading edge of the first dorsal fin, and, often a whip-like tail. Chimaeras are thought to have evolved from an ancient shark group. They differ from elasmobranchs (i.e., true sharks and batoids) in having the upper jaw fused to the skull, only one external gill opening (compared with five to seven in elasmobranchs) with a gill cover or operculum similar to that of bony fishes, and a largely naked or scale-less skin. They have additional claspers on the head and in front of the pelvic fins of adult males, and their teeth are fused into beak-like plates.

They live close to the bottom and feed on molluscs and other invertebrates. The tail is long and thin and they move by sweeping movements of the large pectoral fins. There is an erectile spine in front of the dorsal fin, sometimes poisonous. There is no stomach (that is, the gut is simplified and the ‘stomach’ is merged with the intestine), and the mouth is a small aperture surrounded by lips, giving the head a parrot-like appearance. Features important for identifying chimaeras are head shape, fin positions and shape, relative sizes of the first dorsal fin and spine, tooth plate structure and color. Chimaerids are oviparous and feed mainly on bottom-dwelling invertebrates.

The Subclass Holocephalii has at least 43 species belonging to three families (i.e., Family Callorhinchidae or elephant fishes, Family Rhinochimaeridae or longnose chimaeras, and Family Chimaeridae or shortnose chimaeras).
Globally, three families are represented by more than 40 or more living species of chimaeras, mainly in deepwater on continental slopes. In the Philippines, only one family is known and is represented by at least three species.

WHY THIS BOOK?

In 2005, Compagno *et al.* listed about 163 cartilaginous fish species known to occur in the Philippines: 60% of which is confirmed and validated from voucher specimens or photos; 15% is based on reports of known distribution of the species that covers Philippine waters; and 26% is still undescribed, possibly new to science and/or new records to the country. A rapid search of the Philippine chondrichthyofaunal list in FishBase shows about 180 species recorded in the country.

In the Philippine National Plan of Action for the Conservation of Sharks (NPOA-Sharks), a summary list of true sharks landed in fish ports and/or sold in fish markets in the regions show a total number of 99 species. (*Note though that the NPOA-Sharks list is only for true sharks. Information on batoids and chimaeras was not included*). This second list is largely based on partial regional reports of field personnel of the National Stock Assessment Program (NSAP) as well as opportunistic reports of NGO partners. In the Compagno *et al.* 2005 checklist, suggesting the possibility that more species may be present. Two species were reported to be confirmed based on photo-documentation validated by the shark experts, as such a valid addition to the Philippines checklist. The rest, however, still needs further evidence to confirm occurrence in the regions.

In a number of cases, only local names were used, while some were identified to the family or genus level only. A couple of names do not seem to occur in the Philippines while others were misspellings, a coined name from one species to a genera of another; a possible misidentification or use of names that is no longer valid (*e.g.*, species’ synonym). At least one entry that was reviewed did not mention the species name only the state it was in: *i.e.*, “sharks (chopped)”.

Challenges abound when trying to identify cartilaginous fishes in landing and market sites, as seen in this experience, such as misidentification of species, recording synonyms instead of valid names, misspellings, general inconsistencies and absence of standards in terms of recording and reporting. With the ongoing debate on the taxonomy of certain shark and batoid species and groups – *i.e.*, with species name shifting possibly from one genera and/or families due to newer and more relevant information using newer and more sophisticated methods – it is very easy to make mistakes. Proper documentation is recommended to reduce these mistakes.

Since most of the sharks, batoids and chimaeras are encountered on land (*i.e.*, as landed catch or by-catch) rather than in water, the aim of this book is thus to improve local knowledge and skills in the identification of cartilaginous fishes particularly landed in fish ports and markets, for use by government personnel and field practitioners, or enumerators involved in doing fisheries monitoring and stock assessment programs. This guide may also be of use to individuals (*e.g.*, students, shark enthusiasts) and institutions (*i.e.*, the academe, local government units, management bodies, others), LGU and partner communities interested to know more about shark biodiversity in general and to identify shark species that may be present in their marine protected areas (MPAs) or monitor/report catches in landing and market sites.

A number of photos used in this guide is of voucher specimens collected in landing and market sites by the project staff of Silliman University–Institute of Environmental and Marine Sciences (formerly Silliman University Marine Laboratory or SUML) and partners during the 1998–2001 WWF Philippines Elasmobranch Biodiversity Project. At least three taxonomic workshops were

conducted in those years to validate the identification of the species in the collection, which consequently made a major contribution in Compagno et al. (2005) “Checklist of Philippines Chondrichthyes”\(^\ddagger\). Since then, specimen and data collections were done independently by various individuals, including the contributors to this book.

A lot more species are still unconfirmed, undocumented and/or undescribed. For purposes of documentation, users of this guide are encouraged to at least take photos of the specimens encountered in the field using the photo lay-out shown here (i.e., one individual per photo, left side and ventral side of the shark/ray/chimaeras, additional photos of other parts such as the head, mouth, teeth, claspers, among others; and provide one number tag per individual, same field number tag for all photos taken of the same individual).

Field personnel of BFAR-NFRDI and NSAP regional offices\(^\S\), should follow the collection and documentation processes as required by law when getting vouchers specimens (e.g., whole individuals or parts thereof; tissue samples are useful contributions to NFRDI’s aquatic species genetic database). All vouchers should have photos taken (same as above).

The species checklist and identification guide is a work in progress. More species will most likely be added as more dedicated field surveys and taxonomic work are also supported.

HOW TO USE THIS BOOK

Chapter 1 opens with a simple introduction to fishes, moves on to differentiating bony fishes from cartilaginous fishes and discusses general features of the three typical groupings of cartilaginous fishes: sharks, batoids, and chimaeras.

Commonly used terminologies and measurements based on the structural features of sharks, batoids and chimaeras are illustrated in Chapter 2. Technically, these cartilaginous fishes fall under ten orders. A dichotomous key to the ten orders, with a representative photo of a member species for each order, is provided in Chapter 3. General summaries on distinctive features of the order, the family and species are presented in Chapters 4, 5 and 6 for sharks, batoids and chimaeras, respectively. For easier reference, the orders, families, genus and species are arranged in alphabetical order. Keys to families are shown under the order they belong to. In cases where there is only one family representing the order, a key to the family is deemed unnecessary.

Key to species is not provided. A species account with summary description of the distinguishing features of each species is provided for each species confirmed present in the area, with the symbol of a check mark (✓). When a species may be confirmed present but a species account is not provided, a symbol N is shown. A question mark (?) indicates that presence of the species in the area is still uncertain. A symbol U is shown for undescribed, potentially new species in the collection. A symbol T is shown when the taxonomy is still unresolved.

For brevity, a species account is limited to one page to include information only on: scientific name, common name (as used in Food and Agriculture Organization of the United Nations or UN-FAO), alternative common names in English and/or the local language or dialect (when available), photos and/or illustrations of the whole animal (usually showing the left side of the individual) and the head (usually the ventral view), size and the distinguishing features or characters. Unless

\(^\S\) Under Republic Act 9147 (also known as the Philippine Wildlife Act), any type of collection is not allowed without a permit and prior informed consent. It is best to inquire with BFAR-FQRD on the requirements and have the permit when planning and doing any collection.
otherwise indicated, species epithet is as presented in Compagno et al. (2005). Synonyms for most species are not presented here, pending review of historical and current records and materials available for each species.

Information on size show maximum total length (TL) recorded for the species, expressed in cm, size at maturity of males and females or both, and sizes at birth. For sharks and chimaeras, the size refers to the longest straight length of a fish, from snout to tip to upper caudal tip or tail tip. For batoids, unless otherwise indicated, the size refers to disc length (DL) or the longest straight length of a fish from snout to tip of disc. In some instances disc width (DW) or the widest distance of the disc. Distributional data, biology and habitat are not discussed within each species account but are mentioned under general information on the order or the family. Such information, and including synonymies of relevance to the Philippine chondrichthyoafauna, is already presented in Compagno et al. (2005). Additional information on the species may be accessed individually through FishBase (www.fishbase.org).

A number of photos used in the species accounts are from the Silliman Elasmobranch Photocatalog (1998-2001) and enhanced for use in this book by the FishBase Information and Research Group (FIN). Additional photos are sourced from various photographers and collaborators who gave permission for their use. When local images are unavailable, illustrations used are from the FAO Species Identification Guide for Fishery Purposes volumes 2 & 3 on batoids (Carpenter and Niem 1998 and 1999). When available, original photos of species in the natural setting are provided, with permission from professional and amateur photographers. Sources of images are fully acknowledged where shown.

Technical terms and measurements used in this book are defined in the Glossary. For species descriptions, primary references used are Compagno 1984, Last & Stevens 1994, Carpenter & Niem 1999 (FAO species identification guide for fishery purposes, volumes 2 and 3), and Last et al. 2010. IUCN references were also used to check species distribution and taxonomic notes. The Red List ranking of species reported to occur in the Philippines is shown in Annex 1. Elasmobranch species that are listed in the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendices, with notes on Philippine species, are shown in Annex 2. Additional sources are cited in the species accounts as applicable. Partial citation (i.e., authors and year) is used in the species page; full citation is presented in the Bibliography section. The Bibliography section is not exhaustive but includes additional references that were not necessarily cited in any of the species accounts but are found to be useful as supplemental reading materials for certain species and/or groups.

It is important to note that only general characteristics of the species is provided here to facilitate identification of the species. For more details on the diagnostic characters and information on the biology, habitat, distribution and conservation status of the species, further reading is advised.
Shark Terminology and Measurements

Lateral view of a ground shark.

Lateral view of head of a gulper shark, showing spiracles.

Lateral view of tail of a male carcharhinid shark, showing claspers.

Ventral view of head of a ground shark.

Ventral view of head of a carpetshark.
Batoid Terminology and Measurements

Dorsal view of a dasyatid.

Dorsal view of a tail of a batoid.

Dorsal view of a tail of a batoid.
Lateral view of a chimaera.
Key to the Orders of Cartilaginous Fishes

The two main subclasses of cartilaginous fishes are the Subclass Elasmobranchii (composed of two superorders Galeomorphii and Squalomorphii) and the Subclass Holocephali (chimaeras). Superorder Galeomorphii (or galeomorph sharks) includes four orders, namely, the Heterodontiformes (bullhead sharks), Lamniformes (mackerel sharks), Orectolobiformes (carpet sharks), and Carcharhiniformes (ground sharks). Superorder Squalomorphii (or squalomorph sharks) includes five orders the Hexanchiformes (cow and frilled sharks), Squaliformes (dogfish sharks), Squatiniformes (angel sharks), Pristiophoriformes (sawsharks), and Rajiformes (batoids). Subclass Holocephali only has one order Chimaeriformes (chimaeras).

<table>
<thead>
<tr>
<th>1. Order Heterodontiformes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Garman, 1885. Bullhead sharks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Order Lamniformes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Garman, 1885. Mackerel sharks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Order Orectolobiformes</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. Order Carcharhiniformes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Garman, 1913. Ground sharks.</td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>

Subclass Holocephali

<table>
<thead>
<tr>
<th>Order</th>
<th>Description</th>
<th>Author(s)</th>
</tr>
</thead>
</table>
The dichotomous key is a way of easily identifying the various shark orders represented by species known to occur in the Philippines. A sequence of choices is presented between two statements (known as couplets; i.e., 1a and 1b) based on the general characteristics of the organisms. Check the presence or absence of a character under consideration and move on to next couplet as suggested, until the correct order is shown.

<table>
<thead>
<tr>
<th>1a. One (1) gill slit</th>
<th>1a</th>
<th>1b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.......................... CHIMAERIFORMES</td>
<td>........................ CHIMAERIFORMES</td>
</tr>
<tr>
<td>1b. Five to seven (5-7) gill slits</td>
<td>........................ go to 2</td>
<td>5 Gill slits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2a. Anal fin present</th>
<th>2a</th>
<th>2b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.......................... go to 3</td>
<td>Anal fin present</td>
</tr>
<tr>
<td>2b. Anal fin absent</td>
<td>.......................... go to 7</td>
<td>Anal fin absent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3a. Six to seven (6-7) gills slits; one (1) dorsal fin</th>
<th>3a</th>
<th>3b</th>
</tr>
</thead>
<tbody>
<tr>
<td>.............................. HEXANCHIFORMES</td>
<td>.......................... HEXANCHIFORMES</td>
<td>.......................... HEXANCHIFORMES</td>
</tr>
<tr>
<td>3b. Five (5) gills slits; two (2) dorsal fins</td>
<td>.......................... go to 4</td>
<td>5 Gill slits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4a. Dorsal fin spines present</th>
<th>4a</th>
<th>4b</th>
</tr>
</thead>
<tbody>
<tr>
<td>.............................. HETERODONTIFORMES</td>
<td>.......................... HETERODONTIFORMES</td>
<td>.......................... HETERODONTIFORMES</td>
</tr>
<tr>
<td>4b. Dorsal fin spines absent</td>
<td>.......................... go to 5</td>
<td>Dorsal fin spines absent</td>
</tr>
</tbody>
</table>
5a. Mouth well in front of eyes
............... **ORECTOLOBIFORMES**

5b. Mouth behind front of eyes
............................ go to 6

6a. Nictitating eyelids present (6a1); intestinal valve spiral or scroll-like (6a2)
........... **CARCHARHINIFORMES**

6b. Nictitating eyelids absent (6b1); intestinal valve ring-like (6b2)
............................ **LAMNIFORMES**

7a. Body not flattened, not “ray-like”
............ go to 8

7b. Body flattened, “ray-like”
............ go to 9

8a. Mouth short, not saw-like
............................ **SQUALIFORMES**

8b. Mouth elongated, saw-like
 **PRISTIOPHORIFORMES**

9a. Mouth terminal, pectoral fins not attached to head
............................ **SQUATINIFORMES**

9b. Mouth ventral, pectoral fins attached to head
............................ **RAJIFORMES**
There are four orders of galeomorph sharks, namely, Carcharhiniformes (ground sharks); Heterodontiformes (bullhead sharks), Lamniformes (mackerel sharks), and Orectolobiformes (carpet sharks). The galeomorph sharks are differentiated from the squalomorph sharks by the presence of an anal fin. Members have five to seven pairs of gill opening, two dorsal fins with or without fin spines, anterior mouth behind or just over front of eyes.

<table>
<thead>
<tr>
<th>Order</th>
<th>Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Order Carcharhiniformes</td>
<td>Garman, 1913. Ground sharks.</td>
<td>![Ground Shark]</td>
</tr>
<tr>
<td>2. Order Heterodontiformes</td>
<td>Garman, 1885. Bullhead sharks.</td>
<td>![Bullhead Shark]</td>
</tr>
<tr>
<td>3. Order Lamniformes</td>
<td>Garman, 1885. Mackerel sharks.</td>
<td>![Mackerel Shark]</td>
</tr>
</tbody>
</table>

*See Chapter 3 for the key to the Superorder Galeomorphii.
Order Carcharhiniformes
Garman, 1913. Ground sharks.

Members of this order are characterized by the presence of an anal fin, five pairs of gill slits, two dorsal fins (except the scyliorhinid *Pentanchus profundiculus* with one dorsal fin), absence of fin spines, mouth behind the eyes, and presence of nictitating eyelids. Inshore and offshore waters. Regularly caught by local artisanal and small-scale commercial fisheries where it occurs. Utilized as a food fish; fins used in the oriental shark fin trade, liver for vitamin oil, and offal for fishmeal. Development usually viviparous with young born fully developed.

Of the eight families in this order, seven are represented in the Philippines. Not recorded thus far is the family Leptochariidae (barbeled houndshark).

Families of Carcharhiniformes reported to occur in the Philippines

<table>
<thead>
<tr>
<th>1. Family Carcharhinidae</th>
<th>[Image of requiem shark]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Requiem shark image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Family Hemigaleidae</th>
<th>[Image of weasel shark]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasse, 1879. Weasel sharks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Family Proscylliidae</th>
<th>[Image of finback catshark]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fowler, 1941. Finback catsharks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Family Pseudotriakidae</th>
<th>[Image of false catshark]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gill, 1893. False catsharks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Family Scyliorhinidae</th>
<th>[Image of catshark]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gill, 1862. Catsharks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Family Sphyrnidae</th>
<th>[Image of hammerhead shark]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gill, 1872. Hammerhead sharks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Family Triakidae</th>
<th>[Image of houndshark]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray, 1851. Houndsharks.</td>
<td>![Houndshark image]</td>
</tr>
</tbody>
</table>
Key to Families of the Order Carcharhiniformes reported to occur in the Philippines

<table>
<thead>
<tr>
<th>1a. Head expanded laterally, hammer-shaped</th>
<th>Sphyrnidae</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b. Head normal, not expanded laterally</td>
<td>go to 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2a. Origin of 1st dorsal fin over or behind pelvic-fin bases</th>
<th>Scyliorhinidae</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b. Origin of 1st dorsal fin well ahead of pelvic-fin bases</td>
<td>go to 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3a. Precaudal pits present</th>
<th>go to 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3b. Precaudal pits absent</td>
<td>go to 5</td>
</tr>
</tbody>
</table>

![Diagram of Sphyrnidae](image1.png)

![Diagram of Scyliorhinidae](image2.png)
<table>
<thead>
<tr>
<th>4a.</th>
<th>Spiracles present and apparent; intestine with a spiral valve, having 4 to 6 turns</th>
<th>Hemigaleidae</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b.</td>
<td>Spiracles usually absent (except in Galeocerdo); intestine with a scroll valve</td>
<td>Carcharhinidae</td>
</tr>
<tr>
<td>5a.</td>
<td>First dorsal fin long and formed as a low, rounded keel; spiracles moderately large, nearly or quite as long as eyes</td>
<td>Pseudotriakidae</td>
</tr>
<tr>
<td>5b.</td>
<td>First dorsal fin short, about ⅔ of caudal fin or less; spiracles much smaller, behind eyes</td>
<td>go to 6</td>
</tr>
<tr>
<td>6a.</td>
<td>Labial furrows very short or absent, confined to extreme mouth corners; 1st dorsal-fin base closer to pelvic-fin bases than to pectoral-fin bases</td>
<td>Proscylliidae</td>
</tr>
<tr>
<td>6b.</td>
<td>Labial furrows long, extending anteriorly on lips; 1st dorsal-fin base either equidistant between pectoral and pelvic-fin bases or closer to pectoral-fin bases</td>
<td>Triakidae</td>
</tr>
</tbody>
</table>
Family Carcharhinidae
Jordan & Evermann, 1896. Requiem sharks.

Requiem or ground sharks are small to large sharks found globally, attaining total lengths of at least 70-650 cm. Members of this family are characterized by five gill openings (the 5th behind origin of pectoral fin), round eyes with internal nictitating eyelids, no nasoral grooves or barbels, usually no spiracles, short labial furrows, two spineless dorsal fins, caudal fin with strong ventral lobe. Teeth are usually bladelike with one cusp. Development usually viviparous with young born fully developed. Includes several dangerous species, but most prefer to avoid divers.

Of the 54 or more species representing 12 genera in this family, 24 species representing nine genera occur in the Philippines. At least five more are suspected to be present based on historical or distributional records but needs further validation, i.e., the Borneo shark *Carcharhinus borneensis*, Whitecheek shark *C. dussumieri*, Hardnose shark *C. macloti*, and River shark *Glyphis* sp. The Philippine record for the Spadenose shark *Scoliodon laticaudus* is possibly a misidentification and may be now that of the Pacific Spadenose shark *S. macrorhynchos*.

List of species reported to occur in the Philippines:

- Carcharhinus albimarginatus (Rüppell, 1837). Silvertip shark.
- Carcharhinus ambyrhythnoides (Whitley, 1934). Graceful shark.
- Carcharhinus ambyrhythnchos (Bleeker, 1856). Gray reef shark.
- Carcharhinus borneensis (Bleeker, 1858-1859). Borneo shark.
- Carcharhinus brevipinna (Müller & Henle, 1839). Spinner shark.
- Carcharhinus dussumieri (Valenciennes, 1839). Whitecheek shark.
- Carcharhinus falciformis (Bibron, 1839). Silky shark.
- Carcharhinus hemiodon (Valenciennes, 1839). Pondicherry shark.
- Carcharhinus leucas (Valenciennes, 1839). Bull shark.
- Carcharhinus limbatus (Valenciennes, 1839). Blacktip shark.
- Carcharhinus longimanus (Poe, 1861). Oceanic whitetip shark.
- Carcharhinus macloti (Müller & Henle, 1839). Hardnose shark.
- Carcharhinus melanopterus (Quoy & Gaimard, 1824). Blacktip reef shark.
- Carcharhinus sealei (Pietschmann, 1913). Blackspot shark.
- Galeocerdo cuvier (Peron & Lesueur, 1822). Tiger shark.
- Glyphis sp. River shark.
- Loxodon macrorhinus Müller & Henle, 1838. Sliteye shark.
- Negaprion acutidens (Rüppell, 1837). Sharptooth lemon shark.
- Prionace glauca (Linnaeus, 1758). Blue shark.
- Rhizoprionodon acutus (Rüppell, 1835). Milk shark.
- Scoliodon macrorhynchos (Bleeker, 1852). Pacific spadenose shark.
- Triaenodon obesus (Rüppell, 1837). Whitetip reef shark.

Scoliodon is previously considered to be monotypic but recent morphological and molecular analyses of Scoliodon show three distinct species: S. laticaudus from the coastal waters of India, Pakistan and Sri Lanka. S. macrorhynchos from the Western Central Pacific, and S. muelleri from the Bay of Bengal, off western Thailand (White et al. 2010).
SILVERTIP SHARK
Carcharhinus albimarginatus (Rüppell, 1837)
Other Names: Silvertip reef shark (English); *pating, iho* (local)

Size:
To at least 275 cm; males and females mature at about 170 and 195 cm, respectively; born at 70-80 cm.

Distinguishing features:
A medium-size requiem shark with a dark-grey or grey-brown back, with a pale stripe along the flanks, and white undersides; all fins have prominent white tips (= silvertips) and posterior margins; 1
dorsal fin moderately high, apex pointed or narrowly rounded, its origin above pectoral fin rear tips; 2
dorsal fin moderately high, its origin about opposite that of anal fin, less than ¼ height of 1
dorsal fin; interdorsal ridge present; snout rather long and parabolic (when viewed ventrally); labial furrows very short; anterior nasal flaps very low.

References:
BIGNOSE SHARK

<i>Carcharhinus altimus</i> (Springer, 1950)

Other Names: *pating* (local)

Size:
To at least 285 cm; both sexes mature at about 190 cm and 225 cm, respectively; born at 60-75 cm.

Distinguishing features:
A medium-sized requiem shark with a bronze to grey back, white undersides; 1st dorsal fin moderately tall, moderately rounded at apex, origin almost over the pectoral-fin insertion; a prominent interdorsal ridge; inner corners of pectoral fins blackish; snout rounded and moderately long (viewed ventrally); nasal flaps prominent; labial furrows very short, confined to corners of mouth.

References:
GRACEFUL SHARK
Carcharhinus amblyrhynchoides (Whitley, 1934)

Other Names: Blacktail reef shark (English); *pating* (local)

Size:
To at least 178 cm; both sexes mature at 110-115 cm; born at 50-60 cm.

Distinguishing features:
A medium-sized stout requiem shark with gray or gray-brown back and white or cream undersides; a conspicuous band of white on sides from pelvic fins to first dorsal fin; 1st dorsal fin moderately tall, angular or narrowly rounded; pectoral, dorsal and pelvic fins, and ventral lobe of caudal fin black or dusky-tipped; snout pointed and short (viewed ventrally), its length less than mouth width, 1 to 1.2 times internasal space; nasal flaps very low; labial furrow very short.

References:
Gray reef shark
* * *
Carcharhinus amblyrhynchos (Bleeker, 1856)

Other Names: Longnose blacktail shark (English); *pating* (local)

Size:
To at least 255 cm; commonly about 180 cm; born at 50-60 cm.

Distinguishing features:
A medium-sized requiem shark with dark grey or bronze-grey back and white undersides; 1st dorsal fin never black tipped (in some individuals it may may be white); interdorsal ridge usually absent (sometimes weak); distinct wide black posterior caudal fin margin; anterior margins of caudal fin without black edging; snout broadly rounded (viewed ventrally), its length less than mouth width, equal to or greater than internasal space; nasal flaps very low; labial furrow very short.

References:
SPINNER SHARK

Carcharhinus brevipinna (Müller & Henle, 1839)

Other Names: *patting* (local)

![Spinner shark](image)

Size:
To about 300 cm, commonly at 250 cm; both sexes mature at about 190–200 cm; born at 60–81 cm.

Distinguishing features:
A slender-bodied medium to large-sized requiem shark with bronze to grayish back and white undersides; 1st dorsal-fin origin usually above or slightly behind pectoral-fin free rear tips; interdorsal ridge absent; all fins, except pelvics, with conspicuous black tips in individual over 100 cm; snout long and pointed (viewed ventrally); labial folds short, upper pair usually longer and more prominent.

References:
SILKY SHARK

Carcharhinus falciformis (Bibron, 1839)

Other Names: *pating* (local)

Size:
To about 350 cm, commonly at 250 cm; both sexes mature at about 200-210 cm; born at 53-87 cm.

Distinguishing features:
An elongated, slender-bodied, large-sized requiem shark, with dark gray, grayish brown or bluish black back, and white undersides; 1st dorsal-fin origin well behind pectoral-fin free rear tips; interdorsal ridge present; 2nd dorsal-fin low with very long inner margin, 1.6 to 3.0 times its height; snout rather long, narrowly rounded (viewed ventrally); labial folds short.

References:
PONDICHERRY SHARK
Carcharhinus hemiodon (Müller & Henle, 1839)

Other Names: *pating* (local)

Size:
Maximum size uncertain, estimated at 150–200 cm; juveniles at about 60 cm.

Distinguishing features:
A small stout-bodied requiem shark with a grayish back and white undersides; 1*st* dorsal fin with a narrowly rounded apex, its origin just posterior to pectoral fin base insertions and over inner margins of pectoral fins; 2*nd* dorsal fin moderately high, with shorter inner margin 1.4 to 1.6 times fin height; snout moderately pointed and parabolic; anterior nasal flaps with a short slender narrow lobe.

References:
BULL SHARK

Carcharhinus leucas (Valenciennes, 1839)

Other Names: *pating* (local)

Distinguishing features:

A large stout requiem shark with a grayish back and white undersides; 1st dorsal fin high and broad with a pointed or slightly rounded apex, its origin a little in advance of insertion of pectoral fins; 2nd dorsal fin much smaller, about \(\frac{1}{3}\) the height of 1st, situated over anal fin; interdorsal ridge absent; pectoral fins broad with narrow pointed tips; snout very short and broadly rounded (viewed ventrally), preoral length less than internarial space.

Size:

To at least 400 cm, commonly to 260 cm; males and females mature at 197–226 and 180–230 cm, respectively; born at 55-80 cm.

References:

BLACKTIP SHARK
Carcharhinus limbatus (Valenciennes, 1839)

Other Names: *pating* (local)

Size:
To at least 250 cm, commonly to 150 m; males and females mature at 165–180 and 183–194 cm, respectively; born at 40–70 cm.

Distinguishing features:
A moderately slender medium-sized requiem shark with a dark gray, ashy blue or dusky bronze back and white to yellowish white undersides; a dark band along each side of body; pelvic fins tips with black spot (in juveniles, all fin tips black; dorsal, pectoral and lower lobe of caudal fin plain in specimens >130 cm); 1st dorsal fin with a pointed or narrowy rounder apex, its origin above or just behind pectoral-fin insertions; 2nd dorsal fin smaller than 1st, about twice the height of 1st; interdorsal ridge absent; snout long and pointed (viewed ventrally).

References:
OCEANIC WHITETIP SHARK
Carcharhinus longimanus (Poey, 1861)

Other Names: *pating* (local)

Size:
To at least 350 cm, commonly to 270 cm or less; born at 60–65 cm.

Distinguishing features:
A large stout requiem shark with a dark gray back with bronze tinge, sometimes brown or bluish, and a white undersides with yellowish tinge; 1st dorsal fin large and pectoral fins very long, each broadly rounded; 1st dorsal fin, pectoral fins and lower lobe of caudal fin often white or with white spots (sometimes absent); ventral surface of pelvic fins, apices of anal and 2nd dorsal fins, and ventral lobe of caudal fin often with black spots; interdorsal ridge present; snout short and bluntly rounded (viewed ventrally).

References:
Blacktip Reef Shark

Carcarhinus melanopterus (Quoy & Gaimard, 1824)

Other Names: Blacktip shark, Black-finned shark (English); *pating* (local) bayanakon, lodlod, tutongan, tutungan (Bikol); *iho* (Waray); *kaitan tutungan* (Maranao/Samal/Tao Sug); *lumba, pantay, pating inglesa* (Tagalog); *teburon* (Kuyunon)

Size:
To at least 200 cm, commonly to 160 m; both sexes mature at 95–110 cm; born at 33–50 cm.

Distinguishing features:
A small-medium sized requiem shark relatively slender with greyish to grey-brown back and white undersides; distinct pale stripes along each flank; 1st dorsal fin with a thick black tip (its inner edge sharply defined and often bordered by white area); interdorsal ridge absent; caudal fin lobe with thick black tip (other fins often with smaller black tips); snout very short, broadly rounded (viewed ventrally), preoral length subequal to internarial space.

References:
Distinguishing features:
A small stout to slender-bodied requiem shark with grayish or gray-brown back, whitish undersides; 1st dorsal fin moderately tall, moderately falcate; low interdorsal ridge usually present; only 2nd dorsal fin with a black tip (covering more than half of fin, often extending onto body); snout rather long, narrowly parabolic (viewed ventrally).

References:
SPOT-TAIL SHARK

Carcharhinus sorrah (Valenciennes, 1839)

Other Names: Sorrah shark, School shark, Spottail shark (English); *pating* (local)

Size:
To at least 160 cm, commonly to 106-150 cm; males and females mature at 90–115 cm and 95–118 cm, respectively; born at 50–60 cm.

Distinguishing features:
A small to medium-sized requiem shark with a slender to moderately stout body, gray to gray-brown back and white undersides, with a golden sheen on the area between the eyes and gills slits; 1st dorsal fin with narrowly rounded apex, its origin usually from anterior to just behind pectoral-fin free rear tips; 2nd dorsal fin very low, inner margin extremely long (2.0 to 2.6 times fin height); 2nd dorsal, pectoral and ventral tip of caudal fin strikingly black-tipped; interdorsal ridge present; snout long and moderately pointed (viewed ventrally).

References:
TIGER SHARK
Galeocerdo cuvier (Péron & Lesueur, 1822)
Other Names: Spotted shark (English); pating (local)

Size:
To at least 600 cm (one record of 750 cm, male), commonly at 500 cm; males and females mature at 300–305 cm and 250–350 cm, respectively; born at about 51–76 cm.

Distinguishing features:
A very large requiem shark with a gray back, with black vertical tiger-striped bars and spots on sides (less distinct in adults) and white undersides; 2nd dorsal much smaller than 1st; caudal peduncle with a low, rounded, lateral keel; snout very short and bluntly rounded (viewed ventrally); spiracles present, small and slit-like; upper labial furrows very long, subequal to preoral length.

References:
Last et al. 2010; Compagno et al. 2005; Last & Stevens 1994; Compagno 1998; Schneider 1990; Compagno 1984.
SLITEYE SHARK

Loxodon macrorhinus Müller & Henle, 1838

Other Names: Jordan’s blue dogshark, Slender dogshark (English); *pating* (local)

Size:
To at least 99 cm; males and females mature at about 80–83 and 80–90 cm, respectively; born at 40–55 cm.

Distinguishing features:
A small, very slender requiem shark with gray back and pale undersides; 1st dorsal fin small, 2nd dorsal fin smaller, low and behind larger anal fin; interdorsal ridge rudimentary or absent; 1st dorsal fin caudal and 1st dorsal fins with narrow dark margin, pectoral fins small, narrow and slightly falcate; anal fin with slightly concave posterior margin and long preanal ridges; snout narrow and long, parabolic in shape (viewed ventrally), length greater than mouth width; labial furrows very short; eyes big and narrow with rear notches.

References:
SHARPTOOTH LEMON SHARK
Negaprion acutidens (Rüppell, 1837)
Other Names: *pating* (local), *inho* (Cebuano)

Size:
To at least 300 cm; matures at about 220 cm; born at 50–70 cm.

Distinguishing features:
A large stocky requiem shark with a yellowish brown body, paler undersides; 2nd dorsal fin nearly as large as the 1st (its base more than ¾ of 1st dorsal-fin base); pectoral fins broad and strongly falcate; pelvic fins falcate; no dermal ridge between fins; snout short (shorter than width of mouth), broad, rounded or obtusely wedge-shaped; labial folds short; spiracles usually absent.

References:
BLUE SHARK
Prionace glauca (Linnaeus, 1758)

Other Names: Blue whaler; Great blue shark (English); *pating* (local)

Size:
To at least 383 cm; both sexes mature at about 210–220 cm (somewhat variable); born at 35–50 cm.

Distinguishing features:
A large, slender-bodied requiem shark with indigo blue back, flanks grading from bright blue to silvery blue, and white undersides; 1st dorsal-fin base closer to pelvic-fin base than pectoral-fin base; pectoral fins very long and scythe-like, dusky; caudal peduncle with weak lateral keels; snout very long and narrowly rounded (viewed ventrally); labial furrows very small.

References:
Milk Shark

Rhizoprionodon acutus (Rüppell, 1835)

Other Names: Longman’s dogshark, Fish shark, White-eye shark (English); *pating* (local)

Size:
To about 110 cm (a 178 cm specimen recorded off Africa); males and females mature at about 75–79 and 75–83 cm, respectively; born at 30–40 cm.

Distinguishing features:
A small, moderately slender requiem shark with bronze to grayish back, pale undersides; 2nd dorsal fin smaller than anal fin, its origin about opposite anal-fin insertion; preanal ridges very long, about equal to anal-fin base length; snout long and narrowly rounded (viewed ventrally); upper labial furrows long and prominent; hyomandibular pores alongside mouth corners enlarged in a distinct series, usually more than 16 in total for both sides.

References:
Whitetip reef shark
Triaenodon obesus (Rüppell, 1837)
Other Names: Whitetip shark, Blunthead shark (English); *pating* (local)

Size:
To about 200 cm; males and females mature at 112–118 and 114–122 cm, respectively; born at 52–60 cm.

Distinguishing features:
A medium-sized, moderately slender requiem shark with grayish brown back, usually with a few scattered dark spots, and pale undersides; 1st dorsal and upper caudal fin lobe with distinctive white tips; 1st dorsal fin moderately large, apex narrowly rounded, its origin well behind pectoral-fin free tips; 2nd dorsal fin large, about $\frac{1}{2}$ to $\frac{3}{4}$ height of 1st dorsal fin; interdorsal ridge absent; snout very short, broadly rounded, tip blunt (viewed ventrally); labial furrows very short; anterior nasal flaps with a short, truncate, prominent lobe, formed into a partial tube.

References:
Family Hemigaleidae
Hasse, 1879. Weasel sharks.

Weasel sharks are medium to large sharks characterized by having horizontally oval eyes, small spiracles, two moderate-sized spineless dorsal fins and an anal fin, the first dorsal base well ahead of pelvic bases; precaudal pits present; and caudal fin with a strong ventral lobe and lateral undulations on its dorsal margin.

Of the eight or more species in this family, two are found in the Philippines.

List of species reported to occur in the Philippines:

- **Hemigaleus microstoma** Bleeker, 1852. Sicklefin weasel shark.
- **Hemipristis elongata** (Klunzinger, 1871). Snaggletooth shark.
Sicklefin Weasel Shark
Hemigaleus microstoma Bleeker, 1852
Other Names: Weasel shark (English); *pating* (local)

Distinguishing features:
A small, slender weasel shark with a light bronze to grayish back and pale undersides; lateral distinct, pronounced dip below 2nd dorsal fin; all fins strongly falcate, light-tipped; 2nd dorsal and upper caudal-fin tips dark (fading in large specimens); snout long, depressed, moderately rounded (viewed ventrally); mouth very short and broadly arched, its length about ⅓ of width; labial furrows moderately long, and apparent, upper furrows nearly reaching symphysis of lower jaw; spiracles small; gill slits short, less than twice eye length.

Size:
To at least 114 cm; males and females mature at about 74 and 78 cm, respectively; born at about 45 cm.

References:
SNAGGLETOOTH SHARK
Hemipristis elongata (Kunzinger, 1871)

Other Names: Weasel shark (English); *pating* (local)

Size:
To at least 240 cm; males and females mature at 110-136 and about 120 cm, respectively; born at 45-52 cm.

Distinguishing features:
A medium-sized moderately slender weasel shark with gray or gray-brown back and lighter undersides; all fins falcate, 2nd dorsal and upper caudal-fin tips with a dark blotch (less distinct in large specimens); snout long, broadly rounded (viewed ventrally); mouth long and semiparabolic, with a truncated lower symphysis, its length about ⅔ of width; teeth protruding prominently when mouth closed; labial furrows moderately long and apparent, upper furrows reaching behind symphysis of lower jaw; spiracles small; gill slits long, more than twice eye length.

References:
Family Proscylliidae
Fowler, 1941. Finback catsharks.

Finback catsharks are small sharks, the representative species (*i.e.*, the Pygmy ribbontail catshark) is only about 24 cm. Characteristics include two spineless dorsal fins; base of 1st dorsal fin closer to 2nd dorsal fin about as large as 1st; pelvic-fin bases than to pectoral-fin base; caudal fin asymmetrical, without a rippled dorsal margin and ventral lobe but with a strong subterminal notch; vertebral axis of caudal fin little raised above body axis; snout narrowly rounded (viewed ventrally); labial furrows very short or absent, confined to mouth corners.

Of the five or more species in this family, two are found in the Philippines (one is still undescribed, possibly an endemic). Families similar to the finback catsharks are the false catsharks (Family Pseudotriakidae)*, the catsharks (Family Scyliorhinidae), and the houndsharks (Family Triakidae). False catsharks have their 1st dorsal fin low, long and keel-shaped (*i.e.*, as in *Pseudotriakis microdon*) and spiracles as large as eyes. Houndsharks have their 1st dorsal fin over or behind pelvic-fin bases.

List of species reported to occur in the Philippines:

- ✓ *Eridacnis radcliffei* Smith, 1913. Pygmy ribbontail catshark.
- U *Eridacnis* sp. 1. Philippine ribbontail catshark.

* The monotypic carcharhiniform genus *Gollum* was initially assigned to a new subfamily Golluminae of the family Proscylliidae (Compagno, 1988) and was later reassigned to the family Pseudotriakidae (Compagno 1999; Compagno *et al.* 2005).
PYGMY RIBBONTAIL CATSHARK

Eridacnis radcliffei Smith, 1913

Other Names: *pating* (local)

Size:
To at least 24 cm.

Distinguishing features:
A small shark (*i.e.*, one of the smallest living sharks) with a slender body, dark brown back, lighter undersides; with blackish markings on dorsal fin and tail bands; base of 1st dorsal fin closer to 2nd dorsal fin about as large as 1st; pelvic-fin bases than to pectoral-fin base; caudal fin asymmetrical, without a rippled dorsal margin and ventral lobe but with a strong subterminal notch; vertebral axis of caudal fin little raised above body axis; snout narrowly rounded (viewed ventrally); labial furrows very short or absent, confined to mouth corners.

References:
False catsharks or gollumsharks are soft-bodied sharks with sizes ranging from the relatively small \((e.g., 53.4 \text{ to } 65.2 \text{ cm for the Sulu gollumshark } Gollum \text{ suluensis}) \) to large \((i.e., \text{attaining a length of about } 295 \text{ cm for the false catshark } Pseudotriakis \text{ microdon}) \). False catsharks are characterized by elongated, catlike eyes and nictitating eyelids, large spiracles, a huge, wide, angular mouth that reaches behind eyes, very short labial furrows, numerous small cuspidate teeth in 200 or more rows in each jaw; two large spineless dorsal fins, the first dorsal fin being low, long and keel-like; an anal fin; and a caudal fin with a strong ventral lobe.

Of the three or more species in this family worldwide, at least one is found in the Philippines \((i.e., \text{the Gollum shark}) \).

This family used to be represented by a single species, the \textit{Pseudotriakis microdon} (false catshark), characterized by a distinctive long, low and keel-like 1st dorsal fin and spiracles about as large as eyes. \textit{P. microdon}, however, has not been recorded for the Philippines as yet. \textit{Gollum} is now added as the second genus to this family, which currently has two species, possibly three. \textit{Gollum} was initially assigned to a new subfamily Golluminae of the family Proscylliidae and was later reassigned to the family Pseudotriakidae. It presently contains two species: \textit{G. attenuatus}, initially placed in the family Triakidae; and \textit{G. suluensis}, the one pseudotriakid species recorded in the Philippines, which is recently described and possibly an endemic.

List of species reported to occur in the Philippines:

SULU GOLLUMSHARK
Gollum suluensis Last & Gaudiano 2011

Other Names: Gollum shark

Size:
To at least 53.4 to 65.2cm.

Distinguishing features:
A slender small-bodied shark with darker-colored back and paler undersides; 1st dorsal fin not long-based and keel-like; interdorsal ridge present; 1st dorsal-fin base well forward of the pelvic-fin base; 2nd dorsal fin taller and more upright than 1st; anal-fin origin well behind 2nd dorsal-fin origin; no precaudal pits; caudal peduncle relatively elongate; dorsal caudal margin short, not undulated but with a raised scaly ridge; enlarged lateral scales of caudal ridge semicircular, horizontally directed; short, bell-shaped head; shorter, broader, flattened snout; spiracles four to ten times smaller than eye length; moderately elongate labial furrows; short anterior nasal flaps.

References:
Family Scyliorhinidae
Gill, 1862. Catsharks.

Catsharks are small sharks, with species represented here having sizes of 30 (i.e., Dwarf sawtail catshark *Galeus schultzi*) to 70 cm (i.e., coral catshark *Atelomycterus marmoratus*). Members of this family are characterized usually by their elongated, catlike eyes with nictitating eyelids, lower eyelid usually with longitudinal fold; subterminal mouths not entirely in front of eyes and have no nasoral grooves and folds around nostrils; five gill openings with the 5th over origin of pectoral fin; and two small, spineless dorsal fins, with 1st dorsal fin originating over pelvic fin bases and 2nd dorsal fin originating over anal fin; anal fin originates in advance of the 2nd dorsal fin origin; caudal fin with its upper lobe not elevated above the body axis, with a strong terminal lobe and subterminal notch but no ventral lobe.

One of the largest families of sharks, it has about 154 or more member species, of which 17 are recorded for the Philippines. Six are confirmed present, only five are provided here with species accounts. One species, described recently (i.e., *Halaelurus maculosus*), is often confused with two others (i.e., *H. cf. boesemani* and *H. cf. buergeri*) and believed to belong to species complexes. Further taxonomic work is needed. Two additional species are still undescribed, potentially new, possibly endemics (i.e., *Cephaloscyllium* sp. 1 and *Galeus* sp. 1). Nominal records of eight other species (i.e., *Apristurus longicephalus*, *A. platyrhynchus*, *Cephaloscyllium fasciatum*, *C. isabellum*, *Galeus eastmani*, *Parmaturus melanobranchus*, *Scyliorhinus garmani* and *S. torazame*) need further validation.

List of species reported to occur in the Philippines:

- ✓ *Apristurus herklotsi* (Fowler, 1934). Longfin catshark.
- ✓ *Atelomycterus marmoratus* (Bennett, 1830). Coral catshark.
- U *Cephaloscyllium* sp. 1 nov. Philippines swellshark.
- ? *Galeus eastmani* (Jordan & Snyder, 1904). Gecko catshark
- ✓ *Galeus sauteri* (Jordan & Richardson, 1909). Taiwan sawtail catshark.
- U *Galeus* sp. 1 nov. near *G. nipponensis* Nakaya, 1979.
- ✓ *Pentanchus profundicolus* Smith & Radcliffe, 1912. Onefin catshark.
LONGFIN CATSHARK
Apristurus herklotsi (Fowler, 1934)

Other Names: *pating* (local)

Size:
To at least 48.5 cm TL.

Distinguishing features:
A small shark with head broadly flattened; two dorsal fins, with 1st much smaller than 2nd, about \(\frac{1}{2} \) its area or less; origin of 1st dorsal fin in front of pelvic fin insertions; distance between pectoral-and-pelvic fin bases short, rear tips pectoral fins just in front of pelvic fin origins; snout elongated and usually longer than mouth width; labial furrows very long.

References:
CORAL CATSHARK

Atelomycterus marmoratus (Bennett, 1830)

Other Names: Marbled catshark (English); *iyo* (Ilokano), *kaitan malo, kaitan malu-malo* (Maranao/Samal/Tao Sug), *lahos* (Visayan), *pating* (Tagalog)

Size:
To at least 70 cm; both sexes mature at about 47–55 cm; born at 10–13 cm.

Distinguishing features:
A small shark covered with numerous light grey and white spots; born with light and dark saddle bars which disappear with age; prominent white strip on side of head through gill slits; snout short and slightly flattened, with a blunt tip (viewed ventrally); labial furrow very long; anterior nasal flaps greatly enlarged. dorsal fins relatively large, subequal in size, angled rearwards, with obvious white tips.

References:
Taiwan sawtail catshark
Galeus sauteri (Jordan & Richardson, 1909)

Other Names: Blacktip sawtail catshark (English); *pating* (local)

Size:
To at least 45 cm.

Distinguishing features:
A very small shark, one of the smallest. Body color pattern not so apparent; dorsal fins and sometimes upper and lower caudal-fin lobes with prominent black tips; pectoral fins relatively large, width of their posterior margins usually larger than mouth width; subocular ridges obsolete or nearly so; snout more angular and pointed, usually nearly equal to, or about equal to mouth width; eyes larger and lateral on head, length 3.5 to 4.2% of total length; labial furrows more elongated, extending beyond mouth corners.

References:
DWARF SAWTAIL CATSHARK
Galeus schultzi Springer, 1979

Other Names: *pating* (local)

Size:
To at least 30 cm.

Distinguishing features:
A very small shark, one of the smallest. Body with obscure dark saddle blotches at first and second dorsal bases, and two bands on the tail; dorsal fins and caudal tip without black terminal marking; pectoral fins relatively large, width of their posterior margins usually larger than mouth width; subocular ridges obsolete or nearly so; snout broadly rounded, usually considerably less than mouth width; eyes larger and lateral on head; labial furrows very short, confined to mouth corners.

References:
ONEFIN CATSHARK
*
Pentanchus profundicolus* Smith & Radcliffe, 1912

Other Names: *pating* (local)

Size:
To at least 51 cm.

Distinguishing features:
A small shark with distinct color pattern; body is uniformly dark brown. This is the only 5-gill shark with one dorsal fin; originating behind center of anal fin base; caudal fin with a distinct subterminal notch; head broadly flattened and spatulate, snout elongated and usually longer than mouth width; labial furrows very long, uppers reaching upper symphysis.

References:
Family Sphyrnidae
Gill, 1872. Hammerhead Sharks.

Hammerheads are medium to large-sized sharks easily identified by their characteristic hammer-shaped head. Other characters include much wider set eyes and nasal openings than in other sharks; and absence of spiracles.

Of the eight member species of this family, four are confirmed to be present in the Philippines. The presence of the Bonnethead shark *Sphyrna tiburo* is still uncertain.

List of species reported to occur in the Philippines:
- ✓ *Eusphyra blochii* (Cuvier, 1816). Winghead shark.
- ✓ *Sphyrna lewini* (Griffith & Smith, 1834). Scalloped hammerhead.
- ✓ *Sphyrna mokarran* (Rüppell, 1837). Great hammerhead.
WINGHEAD SHARK

Eusphyra blochii (Cuvier, 1816)

Other Names: Slender hammerhead (English); *pating* (local), *krusan* (Bikol)

Size:
To at least 186 cm; males and females mature at about 108 and 120 cm, respectively; born at 32–47 cm.

Distinguishing features:
Gray or grayish brown back, paler undersides; no dark fin markings; a narrow and wing-shaped head, width across head 40–50% of total length; midline of head with a shallow indentation; nostrils enormously expanded, each nearly two times the mouth width; with a series of small bumps along front edges of nostrils; 1st dorsal fin very tall and falcate, origin above or over pectoral-fin insertion; upper precaudal pit forming a narrow longitudinal groove (not crescentic).

References:
SCALLOPED HAMMERHEAD
Sphyra lewini (Griffith & Smith, 1834)

Other Names: Kidney-shaped shark (English); *pating* (local), *krusan* (Bikol)

Size:
To at least 350 cm, possibly to 420 cm, commonly at 360 m; males mature at 140–180 cm and females at 200–230 cm; born at 40–50 cm.

Distinguishing features:
Olive, bronze or brownish gray back, paler undersides; pectoral fins tipped gray or black (in juveniles, pectoral, lower caudal and 2nd dorsal fin tips dark); head width 24–30% of total length; front margin of head curved anteriorly, with midline and lateral indentations; without small bumps along front edges of nostrils; prenarial grooves well developed; 1st dorsal fin tall, moderately falcate; 2nd dorsal fin small, <\(\frac{1}{3}\) height of 1st; upper precaudal pit forming a crescentic groove.

References:
Great Hammerhead

Sphyrna mokarran (Rüppell, 1837)

Other Names: *pating* (local), *krusan* (Bikol)

Size:
To at least 350–500 cm, commonly between 275–335 cm; males and females mature at about 250 and 265 cm, respectively; born at 50–60 cm.

Distinguishing features:
Bronzy to grayish brown back, paler undersides; fins dusky tipped in young; head width is 23–27% of total length; front margin of head nearly straight (except in some juveniles), with midline indentation; without small bumps along front edges of nostrils; prenarial grooves hardly developed; 1st dorsal fin very tall, strongly falcate, with a short inner margins; 2nd dorsal fin about ½ as high as 1st; upper precaudal pit forming a crescentic groove.

References:
SMOOTH HAMMERHEAD

Sphyrna zygaena (Linnaeus, 1758)

Other Names: Common hammerhead (English); *pating* (local), *krusan* (Bikol)

Size:
To at least 350–500 cm, commonly between 275–335 cm; males and females mature at about 250 and 265 cm, respectively; born at 50–60 cm.

Distinguishing features:
A hammerhead shark with a, bronze or brownish gray back, paler undersides; fins nearly plain, dusky or blackish tipped; head width is 26–29% of total length; front margin of head curved anteriorly, with lateral but without midline indentation; without small bumps along front edges of nostrils; prenarial grooves well developed; 1st dorsal fin tall, moderately falcate, origin of 1st dorsal fin over or slightly behind pectoral-fin insertion; 2nd dorsal fin small, <\(\frac{1}{2}\) height of 1st; upper precaudal pit forming a crescentic groove.

References:
The houndsharks, also referred to as smoothhounds or topes, are small to moderate-sized sharks with horizontally oval eyes, nictitating eyelids, anterior nasal flaps, two large-sized, spineless dorsal fins and an anal fin, the first dorsal base well ahead of pelvic bases.

Of the 47 or more species in this family, nine are reported to occur in the Philippines, two are confirmed present, three are still undescribed which are possible endemics (e.g., Philippine white-spotted smoothhound *Mustelus cf. manazo*, Philippine brown smoothhound *M*. sp. 1 and Philippine grey smoothhound *M*. cf. *griseus*), three others may belong to species complexes the taxonomy of which need to be resolved (i.e., Ocellate topeshark *Hemitriakis* sp. near *H. complicofasciata*, Starspotted smooth-hound *Mustelus manazo*, Spotless smooth-hound *M. griseus*) and one species, the Banded houndshark *Triakis scyllium*, still needs further validation.

List of species reported to occur in the Philippines:

- T *Hemitriakis* sp. near *H. complicofasciata* Takhashi and Nakaya, 2004 Ocellate topeshark.
- T *Mustelus griseus* Pietschmann, 1908. Spotless smooth-hound.
- U *Mustelus* sp 1. Philippine brown smoothhound.
WHITEFIN TOPE
Hemitriakis leucoperiptera Herre, 1923

Other Names: *pating* (local)

Size:
To at least 96 cm.

Distinguishing features:
A relatively small-sized shark. No dusky bar on underside of snout; young with dark bars on caudal fin but not elsewhere; 1st dorsal fin origin more posterior, over and behind inner margins of pectoral fins; 2nd dorsal fin nearly or quite as large as 1st, about ⅔ to equal its area; internarial width about 2.5 times the nostril width; eyes dorsolateral, subocular ridges strong.

References:
LONGNOSED HOUNDSHARK

Iago garricki Fourmanoir, 1979

Other Names: *pating* (local)

Size:
To at least 75 cm.

Distinguishing features:
A small shark with its 1st dorsal fin origin far anterior, over pectoral-fin bases; 2nd dorsal fin nearly or quite as large as 1st, about ⅔ to equal its area; ventral caudal-fin lobe absent to short in adults; eyes lateral, subocular obsolete strong;

References:
ORDER HETERODONTIFORMES
GARMAN, 1885. BULLHEAD SHARKS.

Members of this order are the only living sharks with two spined dorsal fins and anal fin present. Five pairs of gill slits; eyes without nictitating fold; small spiracles present but small; nostrils connected with mouth by deep groove. They are small species (max 165 cm) with small mouth; anterior teeth small and cuspidate, posterior enlarged and molariform; snout very short and bluntly rounded.

Only one family (Family Heterodontidae Gray, 1851), one genus and nine species are in this Order. Only one species is found in the Philippines.

LIST OF SPECIES REPORTED TO OCCUR IN THE PHILIPPINES:

✓ *Heterodontus zebra* (Gray, 1831). Zebra bullhead shark.
ZEBRA BULLHEAD SHARK

Heterodontus zebra (Gray, 1831)

Other Names: Zebra hornshark; Bullhead shark (English); *pating* (local)

Size:
To at least 125 cm; males and females mature at about 84 cm.

Distinguishing features:
A small to medium-sized shark with a large blunt head, with low supra-orbital crest gradually sloping behind eyes cylindrical and slightly compressed body, zebra-pattern of dark, narrow vertical bands on a pale background; dorsal fins preceded with spines; anal fin present; caudal fin with a moderately long dorsal lobe and moderately long ventral lobe, the latter shorter than the dorsal lobe, vertebral axis raised into caudal-fin lobe.

References:
Order Lamniformes
Garman, 1885. Mackerel sharks.

Members of this order are characterized by a combination of five gill slits (last two may be above pectoral fin), an anal fin, two spineless dorsal fins, mouth extending well behind eyes, eyes without nictitating membrane, and ring-like intestinal valve. Spiracles usually present, small and behind eyes.

Of the seven families in this order, six are reported to occur in the Philippines: Alopiidae (Thresher sharks), Cetorhinidae (Basking sharks), Lamnidae (Mackerel sharks), Megachasmidae (Megamouth sharks), Odontaspididae (Sand tiger sharks), and Pseudocarchariidae (Crocodile sharks). Only the family Mitsukurinidae or the goblin sharks has not been reported.

For the family Odontaspididae, a family account is not provided. Nominal record for the Indian sand tiger (*Carcharias tricuspidatus* Day, 1878) in the Philippines is noted in Compagno & Niem (1998). It is considered a probable junior synonym of the Sand tiger (also called as the Grey nurse shark) *C. taurus* Rafinesque, 1810, thus, regarded as a doubtful species. *C. taurus*, on the other hand, is also not reported to occur in the Philippines (*i.e.*, not in range map of the species; see Pollard & Smith 1999) and no reference of the species was made in the Compagno *et al.* 2005. It is considered uncertain for now until additional materials confirm presence of the species in Philippine waters.
Families of Lamniformes Reported to Occur in the Philippines

<table>
<thead>
<tr>
<th>Family</th>
<th>Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Family Alopiidae</td>
<td>Bonaparte, 1838. Thresher sharks.</td>
<td></td>
</tr>
<tr>
<td>2. Family Cetorhinidae</td>
<td>Gill, 1862. Basking sharks.</td>
<td></td>
</tr>
<tr>
<td>3. Family Lamnidae</td>
<td>Müller & Henle, 1838. Mackerel sharks.</td>
<td></td>
</tr>
<tr>
<td>4. Family Megachasmidae</td>
<td>Taylor, Compagno & Struhsaker, 1983. Megamouth sharks.</td>
<td></td>
</tr>
<tr>
<td>5. Family Odontaspididae</td>
<td>Compagno, 1973. Sand tigers</td>
<td></td>
</tr>
<tr>
<td>6. Family Pseudocarchariidae</td>
<td>Compagno, 1973. Crocodile sharks.</td>
<td></td>
</tr>
</tbody>
</table>
Key to the Families of Lamniformes Reported to Occur in the Philippines

| 1a. Upper lobe of caudal fin greatly elongate, caudal fin length about as long as rest of shark | ![Alopiidae]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>................................. Alopiidae</td>
<td></td>
</tr>
</tbody>
</table>

| 1b. Upper lobe of caudal fin not elongate, caudal fin length less than half the length of shark | ![Cetorhinidae]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>................................. Cetorhinidae</td>
<td></td>
</tr>
</tbody>
</table>

| 2a. Gill openings exceptionally large, extending almost to mid-dorsal of head and ventrally to throat, extending onto dorsal surface of head | ![Megachasmidae]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>................................. Megachasmidae</td>
<td></td>
</tr>
</tbody>
</table>

| 2b. Gill openings medium-sized, do not extend to dorsal surface of head | ![Cetorhinidae]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>................................. Cetorhinidae</td>
<td></td>
</tr>
</tbody>
</table>

| 3a. Head large and rounded; mouth terminal, lower jaw extending to snout tip | ![Megachasmidae]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>................................. Megachasmidae</td>
<td></td>
</tr>
</tbody>
</table>

| 3b. Head large and angular; mouth sub-terminal, lower jaw does not extend to snout tip | ![Cetorhinidae]
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>................................. Cetorhinidae</td>
<td></td>
</tr>
</tbody>
</table>
First dorsal fin large and angular; second dorsal and anal fins minute, >10 times less than 1st dorsal. Caudal peduncle with a distinct keel extending well out on caudal fin; caudal fin lunate

\[\text{Lamnidae} \]

First dorsal fin relatively small and low; dorsal and anal fins second dorsal smaller or subequal to 1st dorsal. Caudal peduncle with low or no keel; caudal fin strongly asymmetrical

\[\text{go to 5} \]

Eyes small; lower precaudal pit absent; no keels on caudal peduncle

\[\text{Odontaspididae} \]

Eyes very large; both upper and lower precaudal pits present; a low keel on each side of caudal peduncle

\[\text{Pseudocarchariidae} \]
Family Alopiidae
Bonaparte, 1838. Thresher sharks.

Members of this order are characterized with a greatly elongate upper caudal fin lobe, the length of which is almost one-half of the total length and with a subterminal notch, a short but strong lower lobe, and a caudal peduncle with no keels but with precaudal pits. They have two spineless dorsal fins, an anal fin, five pairs of gill openings, with the 3rd to 5th gill openings located behind the pectoral fin origins, two small spiracles located behind eyes that do not have nictitating membranes, a small but arched and elongate mouth that extends well behind eyes, and ring-type intestinal valve.

Thresher sharks are primarily pelagic but are occasionally sighted in shallow, inshore waters. They are ovoviviparous, with their embryos feeding solely on the yolk sac and other ova produced by the mother.

The family is represented by only one genus, Alopias. All three species in the genus are also found in the Philippines.

List of species reported to occur in the Philippines:

- Alopias pelagicus Nakamura, 1935. Pelagic thresher
- Alopias superciliosus (Lowe, 1839). Bigeye thresher.
- Alopias vulpinus (Bonnaterre, 1788). Common thresher.
Pelagic thresher
Alopias pelagicus Nakamura, 1935

Other Names: *pating* (local)

Size:
To at least 390 cm, commonly at 276 cm; males and females mature at 245–270 and 265–290 cm, respectively; born at 130–160 cm.

Distinguishing features:
A small thresher, the smallest of the three species, with a dark blue back and sides, white underside, no white patch over pectoral fin bases; a straight, broad-tipped pectoral fins, very narrow caudal tip, upper caudal fin lobe very long and strap-like, almost equal to length of rest of shark, lower caudal fin lobe short but strong, and terminal lobe very small; fusiform body, narrow head, broadly convex forehead, moderately large eyes, esp. in juveniles. Often confused with the common thresher, but can be distinguished by the dark color over the bases of its pectoral fins.

References:
BIG-EYE THRESHER

Alopias superciliosus (Lowe, 1839)

Other Names: *pating* (local)

Size:
To at least 488 cm, commonly at 300–400 cm; males and females mature at 270 and 300 cm, respectively; born at less than 100 cm (possibly as small as 65 cm).

Distinguishing features:
A large thresher with purplish gray back and cream or light colored undersides, not expanded over pectoral-fin bases, dusky posterior edges of pectoral and pelvic fins and sometimes 1st dorsal fin; 1st dorsal fin further back than in other threshers, curved broad-tipped pectoral fins, broad caudal tip, upper caudal fin lobe very long and strap-like almost or quite equal to length of rest of shark, lower caudal fin lobe short but well developed; fusiform body, very large eyes (extending onto the dorsal head surface), and indented forehead.

References:
COMMON THRESHER
Alopias vulpinus (Bonnaterre, 1788)

Other Names: *pating* (local)

Size:
To at least 760 cm, commonly at 430–490 cm; males and females mature at 184–226 cm, respectively; apparently larger than *Alopias pelagicus* and *A. superciliosus*.

Distinguishing features:
A large thresher with a dark blue-grey back and underside of snout, lighter sides, white patch extends from the abdomen over the pectoral-fin bases, white dots and patches sometimes present on pectoral-, pelvic-, and caudal- fin tips, blackish pectoral, pelvic, and dorsal fins; narrow-tipped pectoral fins, 2nd dorsal origin well behind rear tip of pelvic fin, narrow-tipped caudal fin, caudal fin lobe very long and strap-like, about as long as or longer than length of rest of shark; lower caudal fin lobe short but well developed; fusiform body, relatively small eyes.

References:
The family Cetorhinidae is monotypic, represented by only one single species, the basking shark, *Cetorhinus maximus*. It is the world’s second largest fish, after the whale shark, reportedly reaching to 1,520 cm. It is characterized by exceptionally large gill openings extending around the top and bottom of its head and with 5th gill opening in front of pectoral fin, elongate gill rakers, greatly enlarged mouth (up to 100 cm in width), and reduced teeth characterizing plankton feeders. The teeth have a single conical cusp, are curved backwards and are the same on both the upper and lower jaws. Its tail is nearly symmetrical with keel on caudal peduncle.

The basking shark is a filter-feeding cold-water pelagic species that is migratory and widely distributed, recently has been confirmed to cross the much-warmer waters at the equator. The occurrence of basking sharks in Philippine waters remains questionable since it is outside the distributional range of the species. The Philippine record is based only on skeletal remains that washed up on the shores of Burias Island, Masbate (Compagno *et al.* 2005).

List of species reported to occur in the Philippines:

- *Cetorhinus maximus* (Gunnerus, 1765). Basking shark.
Mackerel sharks are large sharks found globally, attaining total lengths of up to 640 m or more. Some members of this family are man-eaters. They are characterized by having pointed snouts, fusiform bodies, large gill openings, the 5th gill opening located in front of pectoral fin; 1st dorsal fin large, high, erect and angular or somewhat rounded; 2nd dorsal and anal fins extremely small; caudal peduncle with a distinct keel. Teeth are large, long and few in number, blade-like with a single cusp; spiracle sometimes absent. Ooviviparous, embryos feeding on yolk sac and other ova produced by the mother.

Of the ten or more species in this family, at least two are found in the Philippines, one (i.e., the Longfin mako) is believed to be present but needs further validation.

List of species reported to occur in the Philippines:

- *Carcharodon carcharias* (Linnaeus, 1758). Great white shark.
Great white shark
Carcharodon carcharias (Linnaeus, 1758)

Other Names: White shark (English); *pating* (local)

Size:
To at least 720 cm, commonly between 500–600 cm; males and females mature at about 350 and 400 cm, respectively; born at 130 cm.

Distinguishing features:
A very large shark with stout, fusiform body, dark grey to brown or black above, lighter on sides, and white undersides; fins with dusky margins below, black tips on underside of pectoral fins, usually with a black spot at rear pectoral fin base; 1st dorsal-fin larger than 2nd, origin usually over the pectoral-fin inner margins, anal fin origin posterior to rear end of 2nd dorsal fin base; caudal peduncle depressed, expanded laterally with a prominent keel extending to caudal fin; caudal fin crescentic; eyes conspicuous black; blunt, conical snout and large, triangular, saw-edged teeth.

References:
Distinguishing features:
A large shark with a long slender, fusiform body; dark blue back, lighter blue on sides and white belly; 1st dorsal-fin larger than 2nd, origin posterior to pectoral-fin inner margins, anal fin origin below to middle of 2nd dorsal fin base; caudal peduncle depressed, expanded laterally with a prominent keel extending to caudal fin; caudal fin crescentic with lower lobe strongly developed; large black eyes; acutely pointed snout; large, narrow, smooth-edged teeth.

References:
This family is represented by only one single species, the megamouth shark, *Megachasma pelagios*. Reaching to more than 5 m, the megamouth shark is the world’s third largest fish next to the whale shark *Rhincodon typus* (~18 m) and basking shark *Cetorhinus maximus* (~15 m). The species is wide-ranging and is recorded to occur in depths between 15–150 m.

The species was first discovered in 1983 from a specimen caught in 1976 from which a new shark family, genus and species had to be defined. Genus *Megachasma* is derived from the Greek “*megas, megalos*” = great and “*chasma*” = cave, while the species name *pelagios* is also Greek, meaning of the sea. Recent studies suggest that the megamouth shark is the most primitive living species within the order Lamniformes and has independently evolved the filter feeding mode.

List of species reported to occur in the Philippines:

MEGAMOUTH SHARK

Megachasma pelagios Taylor, Compagno & Struhsaker, 1983

Other Names: White shark (English); *pating* (local)

Size:
To at least 550 cm, one female reported at 709 cm; males and females mature at 400 and 500 cm, respectively.

Distinguishing features:
A large shark with a bulbous head and stout body, tapering posteriorly; blackish brown back, lighter sides, white undersides; dorsal fins low and angular; anal fin small, pectoral fins long and narrow; asymmetrical, non-lunate caudal fin with a short and strong ventral lobe, an upper but no lower pre-caudal pit, caudal peduncle without keels. Snout extremely short and broadly rounded with white band on anterior surface, huge terminal mouth extending behind semicircular eyes, with no nictitating membrane; huge protrusible jaws with small hooked teeth. Gill slits moderately long, not reaching dorsal surface of head, internal gill slits lined with dense rows of papillose gill rakers.

References:
There is only one species in this family, *i.e.*, *Pseudocarcharias kamoharai*, characterized by a trunk cylindrical and somewhat compressed, stout. Head very long, snout extremely short but broadly rounded, huge terminal mouth that extends behind the eyes.

The species presence in the Philippines is uncertain but believed to likely occur in benthopelagic habitats along the upper continental slopes of the region.

List of species reported to occur in the Philippines:

ORDER ORECTOLOBIFORMES
COMPAGNO, 1973. CARPET SHARKS.

Members of the order Orectolobiformes are characterized by having two spineless dorsal fins of about equal size (except in whale sharks and zebra sharks where the 2nd dorsal fin is much smaller than the 1st). They have a very short mouth confined to being well in front of eyes, specialized nostrils with prominent nasoral grooves and barbels in most, usually large spiracles located below the eye (except in whale sharks which have smaller spiracles). Many species have small gill openings, with 5th slit overlapping the 4th behind the origin of pectoral fin.

There are seven families belonging to this order. Only one (\textit{i.e.}, family Brachaeluridae or the blind sharks) has not been reported present in the Philippines.

FAMILIES OF ORECTOLOBIFORMES REPORTED TO OCCUR IN THE PHILIPPINES

<table>
<thead>
<tr>
<th>Family</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Family Ginglymostomatidae Gill, 1862</td>
<td>Nurse sharks.</td>
</tr>
<tr>
<td>2. Family Hemiscylliidae Gill, 1862</td>
<td>Longtailed Carpetsharks.</td>
</tr>
<tr>
<td>5. Family Rhincodontidae Müller & Henle, 1839</td>
<td>Whale sharks.</td>
</tr>
</tbody>
</table>
Key to Families of the Order Orectolobiformes Reported to Occur in the Philippines

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Mouth very broad, terminal; caudal fin high, forked, upper and lower lobes tall; subterminal notch absent</td>
<td>Rhinodontidae</td>
</tr>
<tr>
<td>1b</td>
<td>Mouth smaller, subterminal; caudal fin low; subterminal notch present</td>
<td>Go to 2</td>
</tr>
<tr>
<td>2a</td>
<td>Fleshy lobe or groove present on outer margins of nostrils</td>
<td>Go to 3</td>
</tr>
<tr>
<td>2b</td>
<td>No fleshy lobe or groove on outer margins of nostrils</td>
<td>Go to 4</td>
</tr>
<tr>
<td>3a</td>
<td>Caudal fin very long, almost as long as body; ridges present on both sides of the body</td>
<td>Stegostomatidae</td>
</tr>
<tr>
<td>3b</td>
<td>Caudal fin shorter, less than half the length of body; ridges absent on both sides of the body</td>
<td>Ginglymostomatidae</td>
</tr>
<tr>
<td>4a.</td>
<td>Origin of anal fin forward of origin of 2nd dorsal fin; anal fin distinctly separate from caudal fin</td>
<td> </td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>................. Parascylliidae</td>
<td>Parascylliidae</td>
</tr>
<tr>
<td>4b.</td>
<td>Origin of anal fin well behind origin of 2nd dorsal fin; anal fin adjacent to caudal fin and sometimes barely indistinguishable from it</td>
<td> </td>
</tr>
<tr>
<td></td>
<td>................... go to 5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a.</th>
<th>Body strongly depressed anteriorly; narrow skin flaps (dermal lobes) present around mouth and sides of head</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>................. Orectolobidae</td>
<td>Orectolobidae</td>
</tr>
<tr>
<td>5b.</td>
<td>Body more or less cylindrical anteriorly; narrow skin flaps (dermal lobes) present around mouth and sides of head</td>
<td></td>
</tr>
<tr>
<td></td>
<td>................. Hemiscylliidae</td>
<td>Hemiscylliidae</td>
</tr>
</tbody>
</table>
The nurse sharks are small to large sharks that go down to depths of at least 70 m. They are characterized by the presence of nasoral grooves, short to long barbels, short, small mouths with large chamber to suck in their prey close to the substrate. They have two spineless dorsal fins and an anal fin, with the 2nd dorsal fin originating well ahead of the anal fin origin, and a short precaudal tail, which is much shorter than its head and body.

This family is comprised of three genera (i.e., *Ginglymostoma*, *Nebrius* and *Pseudoginglymostoma*) represented by a single species each. Only *Nebrius* is reported to occur in the Philippines.

List of species reported to occur in the Philippines:

- *Nebrius ferrugineus* (Lesson, 1830). Tawny nurse shark.
TAWNY NURSE SHARK

Nebrius ferrugineus (Lesson, 1830)

Other Names: *pating* (local)

Size:

To at least 320 cm; males and females mature at about 225 and 230 cm, respectively; born at 40–60 cm.

Distinguishing features:

A large nurse shark with a plain, yellowish to greyish brown body with two spineless similar-sized dorsal fins situated closer to tail, with 1st dorsal fin origin just over the pectoral fin, tips angular; caudal fin elongate, asymmetrical, its length about one third of total length; pectoral fins sickle-shaped; nostrils near tip of snout, with short barbels and nasoral grooves spiracle much smaller than eye.

References:

Family Hemiscyllidae
Gill, 1862. Longtailed Carpetsharks.

The longtailed carpetsharks, also referred to as bamboo sharks, are small, slender sharks (with a maximum length of about 1 m) characterized by having a precaudal tail which is longer than its head and trunk. They have two spineless dorsal fins, with the 1st dorsal fin originating over or behind pelvic fin bases, a low and rounded anal fin separated by a notch from caudal fin. They have five gill openings, the last two of which are over the pectoral fin base. They have eyes which have no nictitating membranes and very large spiracles located behind and below these eyes. They have subterminal nostrils with short barbels, narrow circumnarial grooves close to the front of a ventral mouth, with labial furrows connected by dermal flap.

This family is comprised of two genera, i.e., Chiloscyllium and Hemiscyllium, represented by 17 or more species. Only the genus Chiloscyllium is reported to occur in the Philippines with at least two species confirmed present. Two more species are suspected to be present but still need further validation. These are inshore bottom sharks of continental waters with their young hatching from round egg cases. Their diet probably includes small bottom fishes and invertebrates. They are sluggish sharks and are considered relatively harmless, spending most of their time resting on the bottom.

List of species reported to occur in the Philippines:

? Chiloscyllium indicum (Gmelin, 1788). Slender bambooshark.

✓ Chiloscyllium plagiosum (Bennett, 1830). Whitespotted bambooshark.

✓ Chiloscyllium punctatum Müller & Henle, 1838. Brownbanded bambooshark.
WHITESPOTTED BAMBOOSHARK
Chiloscyllium plagiosum (Bennett, 1830)
Other Names: *pating* (local)

Size:
To about 95 cm; males mature at 50–63 cm; hatch at 10–13 cm.

Distinguishing features:
A small slender bambooshark with transverse pale and dark bands and numerous white or bluish spots; body with lateral dermal ridges; dorsal fins about equal in size to pelvic fins and without projecting free rear tips; base of anal-fin much shorter than base of lower caudal-fin lobe; anal-fin origin well behind free rear tip of 2nd dorsal fin.

References:
Distinguishing features:
A small slender bambooshark usually without color pattern (dark transverse bands may be seen in young); body without lateral dermal ridges; dorsal fins larger than pelvic fins and with projecting free rear tips; base of anal-fin much shorter than base of lower caudal-fin lobe; anal-fin origin well behind free rear tip of 2nd dorsal fin.

References:
Family Orectolobidae
Gill, 1896. Wobbegongs.

Wobbegongs are small to large sharks characterized with a depressed body, a very broad and flattened head with unique lateral flaps of skin (i.e., “dermal flaps”), nostrils with long, pointed or branched barbels, a deep groove that leads from nostril to mouth (or circumnarial groove), five gill openings, with the 4th and 5th located behind origin of pectoral fin, over the base, and an anal fin.

These are bottom sharks of warm-temperate to tropical continental waters of the western Pacific, occurring from intertidal, on algal-covered rocky areas and coral reefs, down to at least 110 m. They are nocturnal, resting on the bottom during the day and prowling on its reef habitat at night, presumably feeding on bottom invertebrates and fishes. Ovoviviparous, with large litters of 20 or more young.

This family is comprised of three genera (i.e., Orectolobus, Eucrossorhinus and Sutorectus) represented by 12 or more species. Only the genus Orectolobus is represented in the Philippines and possibly by at least one species, i.e., Orectolobus cf. ornatus which is still undescribed, possibly an endemic. Nominal records for at least two other species exist (i.e., Japanese wobbegong O. japonicus and the Ornate wobbegong O. ornatus) but these are possibly confused with the Philippine species. The Philippine wobbegong is said to be distinct from the Australian and the Japanese species but is believed to be closely related to the recently described Indonesian species, O. leptolineatus. The presence of these species needs further confirmation.

List of species reported to occur in the Philippines:

? Orectolobus ornatus (De Vis, 1883). Ornate wobbegong.

U Orectolobus cf. ornatus. Philippine wobbegong.

* The taxonomy of Orectolobus in the Indo–West Pacific is confused as several forms have been identified incorrectly as the O. ornatus (de Vis. 1883) or O. maculatus (Bonnaterre. 1788) both of which are considered as Australian endemics.
Family Parascylliidae
Gill, 1862. Collared carpetsharks.

Collared carpetsharks are small (<1 m), slender sharks generally characterized with having a tiny subterminal mouth situated well in front of cat-like eyes, short nasal barbels and very small spiracles. Mouth is connected to the nostrils by narrow nasoral grooves, with smaller fleshy folds skirting the nostrils laterally. They have five gill openings with the 5th overlapping the 4th. They have two spineless dorsal fins with 1st dorsal origin behind pelvic fin bases, anal fin origin well in front of the 2nd dorsal fin origin. Their caudal fin has a distinct upper lobe, with a strong terminal lobe and subterminal notch, but no ventral lobe. Some species have a distinct “collar” marking around the gill region (although in others, the collar may be absent or inconspicuous) and saddle marks, with white or dark spots over the body.

This family is comprised of two genera (i.e., Cirrhoscyllium and Parascyllium) represented by seven or more species. In the Philippines, only one species is reported to occur, i.e., Barbelthroat carpetshark Cirrhoscyllium expolitum.

Superficially similar to the collared carpetsharks are the catsharks (Family Scyliorhinidae). Catsharks, however, have their mouths not entirely in front of eyes and have no nasoral grooves and folds.

List of species reported to occur in the Philippines:

✓ Cirrhoscyllium expolitum Smith & Radcliffe In Smith, 1913. Barbelthroat carpetshark.
Barbelthroat Carpetshark

Cirrhoscyllium expolitum Smith & Radcliffe in Smith, 1913

Other Names: *pating* (local)

Size:
To at least 34 cm.

Distinguishing features:
A small slender shark with six or possibly ten diffuse saddle marks on dorsal surface, saddles above abdomen rounded and continuing above pelvic-fin bases, not C-shaped, head length three times 1st dorsal-fin base. A pair of barbels on throat area; gill region without collar marking.

References:
This family is represented by only one species, the whale shark, *Rhincodon typus*, the world’s largest fish, reportedly reaching to 18–20 m. Whale sharks are highly migratory in tropical and warm temperate seas but are reported to return to the same sites annually primarily to feed.

The species is distinctive for its unique checkerboard body pattern of light spots and vertical and horizontal stripes, prominent ridges on dorsal surface and sides. It has elongated gill rakes, a large terminal mouth and reduced teeth characterizing plankton feeders. The teeth have a single conical cusp, are curved backwards and are the same on both the upper and lower jaws. Its tail is asymmetrical with keel on caudal peduncle.

List of species reported to occur in the Philippines:

- *Rhincodon typus* (Smith, 1828). Whale shark.
WHALE SHARK

Rhincodon typus (Smith, 1828)

Other Names: *pating* (local)

Size:
To at least 16 m, reportedly up to 18–20 m; males and females mature at 300–400 cm and >760 cm, respectively; born at about 40–64 cm.

Distinguishing features:
A huge shark with a distinctive color pattern of pale bars and stripes on back and sides of body; nostrils with rudimentary barbels; five exceptionally large gill openings, the fifth behind origin of pectoral fin, over fin base; two spineless dorsal fins, with 1st much larger than 2nd; caudal fin semilunate, caudal peduncle depressed, with strong fleshy keels on sides and prominent ridges on dorsal surface and sides. Head very broad and flattened with very wide almost terminal mouth and reduced teeth about 300 rows per jaw.

References:
This family is monotypic represented by only one species, the zebra shark *Stegostoma fasciatum*, found in coral reefs, a relatively large shark reaching up to 2 m or more.

It is a moderately stout-bodied shark with prominent ridges on side, and distinct for having a banded (in juveniles) or spotted (adult) color pattern and greatly elongated caudal fin, the length of which is about half of its total length. It has short barbels, nasoral grooves, a small anterior mouth, small eyes with no nictitating membrane at sides of head, spiracles about the size of the eyes. It has two spineless dorsal fins, the 1st dorsal much larger than the 2nd. It is oviparous, laying eggs in large, dark brown or purplish-black cases with fine lateral tufts of hairlike fibers. It feeds primarily on molluscs (gastropods and bivalves) but also crabs and shrimps and small bony fishes.

List of species reported to occur in the Philippines:

- *Stegostoma fasciatum* (Hermann, 1783). Zebra shark.
ZEBRA SHARK

Stegostoma fasciatum (Hermann, 1783)

Other Names: *pating* (local)

Size:
To at least 235 cm (reports of 354 cm need validation); males and females mature at about 145–185 and 170 cm, respectively; hatch at about 20–36 cm.

Distinguishing features:
A stout-bodied shark with a very long and low blade-like caudal fin, the length of which is nearly or about half its total length, and with prominent ridges on dorsal surface and sides. Color pattern differs in juveniles and adults: in young below 60–70 cm with dark brown to black with vertical white or yellow bars, spots and reticulations in juveniles; in subadults/adults, dark areas become scattered into dark spots on a yellowish background.

References:
Superorder Squalomorphii

There are five orders of squalomorph sharks, namely, Hexanchiformes (cow and frilled sharks), Pristiophoriformes (sawsharks), Squaliformes (dogfish sharks), Squatiniformes (angel sharks), and Rajiformes (batoids). The batoids, although also under the superorder Squalomorphii, are treated under a separate chapter for convenience.

The squalomorph sharks are differentiated from the galeomorph sharks by the absence of an anal fin.

1. Order Hexanchiformes
 Garman, 1913. Cow and frilled sharks.

2. Order Pristiophoriformes
 White, 1936. Saw sharks.

3. Order Squaliformes
 Gill, 1862. Dogfish sharks.

4. Order Squatiniformes

5. Order Rajiformes
 Müller & Henle, 1841. Batoids.

*See Chapter 4 for the key to the orders of squalomorph sharks and batoids.
Order Hexanchiformes
Garman, 1913. Cow and frilled sharks.

Members of this order are characterized by six to seven gill openings, one spineless dorsal fin, anal fin; eyes without nictitating fold; a small spiracle well behind eye.

The order is represented globally by six species in two families (*i.e.*, two species of frilled shark of the Family Chlamydoselachidae and four species of sixgill and sevengill sharks of the family Hexanchidae). In the Philippines, only the Family Hexanchidae is represented.

Family Hexanchidae
Gray, 1851. Sixgill and sevengill sharks.

The members of this family are characterized by six or seven pairs of gill openings. The sixgill sharks belong to the genus *Hexanchus* while the sevengill sharks belong to the genus *Heptranchias* or *Notorynchus*. Only the genera *Hexanchus* (two species) and *Heptranchias* (one species) are represented in the Philippines.

List of species reported to occur in the Philippines:

- *Heptranchias perlo* (Bonnaterre, 1788). Sharpnose sevengill shark.
- *Hexanchus griseus* (Bonnaterre, 1788). Bluntnose sixgill shark.
Distinguishing features:
A small and slender cowshark with seven gill openings and narrow head (= sharp snout); generally brownish grey back, paler below; one small dorsal fin originating over inner margins of pelvic fins; anal fin smaller than dorsal fin; fin margins light in adults (dark-tipped in juveniles, particularly the dorsal and caudal fins), sometimes with indistinct dark blotches on body; eyes big (fluorescent green in color in live/fresh specimens); mouth ventral; teeth wide, low and comb-shaped.

References:
BLUNTNOSE SIXGILL SHARK
Hexanchus griseus (Bonnaterre, 1788)

Other Names: Cow shark (English); *pating* (local)

Size:
To about 482 cm; males and females mature at 315 and 400 cm, respectively; born at 65–70 cm.

Distinguishing features:
A relatively heavy-bodied/stout cowshark with six gill openings and broad head (= broad snout), brown or grey back, paler below, a light stripe along sides of body, and thin white white trailing edges on fins; one small dorsal fin originating over inner margins of pelvic fins; caudal peduncle short; anal fin close to size of dorsal fin; eyes big (fluorescent green in color in live/fresh specimens); mouth ventral, lower jaw with six rows of large comb-shaped teeth on each side.

References:
Bigeyed Sixgill Shark
Hexanchus nakamurai Teng, 1962
Other Names: *pating* (local)

Size:
To about 180 cm; males and females mature at 123 and 142 cm, respectively; born at 43 cm.

Distinguishing features:
A small and slender cowshark with six gill openings and narrow head, brown or grey back, paler below, and thin white trailing edges on fins; one small dorsal fin originating midway of pelvic fins and anal fin; caudal peduncle long; anal fin much smaller than dorsal fin; eyes big (fluorescent green in color in live/fresh specimens); mouth ventral, lower jaw with five rows of large comb-shaped teeth on each side.

References:
Order Pristiophoriformes
White, 1936. Saw sharks.

The order is comprised of only one family (Family Pristiophoridae) represented by nine or more species belonging to two genera, distinct from each other in the number of gill openings located on sides of head anterior to the pectoral-fin bases, i.e., *Pristiophorus* (five gill openings) and *Pliotrema* (six gill openings).

Members are characterized by a shark-like body (i.e., body not flattened nor “ray-like”) without lateral ridges, a long, saw-like snout with alternate large and small rostral teeth weakly embedded on each side, unique rostral barbels in front of nostrils, a pair of long barbels one on each side of the snout, and a long precaudal tail about as long as trunk with long lateral folds reaching a strongly asymmetrical caudal fin. They also have two dorsal fins (usually without spines but may sometimes be present as internal rudiments) and no anal fin.

Sawsharks are similar to, and sometimes mistaken as sawfishes (members of the family Pristidae, a family of batoid fishes under the Order Rajiformes) in having a rostral saw. Sawfishes, however, have their pectoral fins expanded anteriorly over the gill openings and fused to the sides of the head, so that the head and pectoral fins form a distinct pectoral disc characteristics of batoids. They have ventral gill openings ventral (as in other batoids) and have no barbels on snout. Additionally, sawfishes are much larger, reaching 6 m or more.

Family Pristiophoridae
Bleeker, 1859. Saw sharks.

Only the genus *Pristiophorus* is reported to occur in the Philippines. Members of this genus are characterized with having five pairs gill slits, smooth larger rostral teeth and teeth without prominent transverse ridges on basal ledges.

The genus is represented in the Philippines by two species, namely, the newly described Lana’s sawshark *P. lanae* and the still undescribed species *Pristiophorus* sp. C) which was previously misidentified as the Australian *Pristiophorus cirratus* and confused with *P. japonicus*. No species account is available here.

List of species reported to occur in the Philippines:

- N *Pristiophorus lanae* Ebert & Wilms, 2013. Lana’s sawshark.
Order Squaliformes
Gill, 1862. Dogfish sharks.

Members of this order are characterized with having two dorsal fins, with or without spines, no anal fin, five gill openings, presence of spiracles behind eyes with no nictitating membrane, body shark-like not flattened nor “ray-like” and mouth short, not saw-like.

Of the seven families in this order, five are represented in the Philippines. Not recorded thus far are representatives of the families Somniosidae (Sleeper sharks) and Oxynotidae (Roughsharks).

Families of Squaliformes reported to occur in the Philippines

<table>
<thead>
<tr>
<th>Family</th>
<th>Description</th>
</tr>
</thead>
</table>
Key to the Families of Squaliformes Occurring in the Philippines

1a. Second dorsal fin, and usually 1st dorsal fin (except in *Squaliolus*), without a spine

.......................... go to 2

1b. Spines present on both dorsal fins

.......................... go to 3

2a. Dorsal fins far apart, 1st dorsal fin partially or entirely in front of pelvic fin origin; dermal denticles small to moderately large, variable in shape

................. Dalatiidae

2b. Dorsal fins close-set, 1st dorsal fin behind pelvic fin origin; dermal denticles large to very large and thorn-like

......................... Echinorhinidae
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a.</td>
<td>Dorsal fin spines without grooves on sides; caudal peduncle with a strong keel and usually with upper pre-caudal pit; subterminal notch on caudal fin absent</td>
<td>Squalidae</td>
</tr>
<tr>
<td>3b.</td>
<td>Dorsal fin spines with grooves on sides; caudal peduncle without keel or pre-caudal pit; subterminal notch on caudal fin present</td>
<td>go to 4</td>
</tr>
<tr>
<td>4a.</td>
<td>Second dorsal fin as large or noticeably larger than 1st; first dorsal fin not elongated</td>
<td>Etmopteridae</td>
</tr>
<tr>
<td>4b.</td>
<td>Second dorsal fin noticeably smaller than first; 1st dorsal fin elongated</td>
<td>Centrophoridae</td>
</tr>
</tbody>
</table>
Family Centrophoridae
Bleeker, 1859. **Gulper sharks.**

Gulper sharks are characterized by having two spined dorsal fins with 1st dorsal fin origin well anterior to pelvic-fin origins, a caudal peduncle without precaudal pits but with lateral keels. They have larger spiracles five gill openings, the 5th is not abruptly larger than 1st to 4th and teeth larger on lower jaw than those on upper jaw.

Of the six or more species belonging to two genera (*Centrophorus* and *Deania*) in this family, at least three species are confirmed present in the Philippines (\textit{i.e.}, the Black gulper shark *C. isodon*, Lowfin gulper shark *Centrophorus lusitanicus* and Arrowhead dogfish *Deania profundorum*). There is considerable taxonomic controversy of the genus *Centrophorus*, some are suspected to be part of species complexes while others are considered as distinct species. Nominal records for at least four species (\textit{i.e.}, *C. granulosus*, *C. moluccensis*, *C. squamosus*, and *Deania calcea*) but which need further confirmation due to confusion in the genera. At least two other species are potentially new, \textit{i.e.}, *C. cf. moluccensis* and *D. cf. rostrata*. Further study is required for the taxonomic resolution of the genera and species.

List of species reported to occur in the Philippines:

 [Senior synonym of *Centrophorus acus* Garman, 1906].
- ✓ *Centrophorus lusitanicus* Bocage & Capello, 1864. Lowfin gulper shark.
- U *Centrophorus cf. moluccensis* Bleeker, 1860. Philippine smallfin gulper shark.
 [Senior synonym of *Deania rostrata* (Garman, 1906).
- U *Deania cf. rostrata* (Lowe, 1839). Birdbeak dogfish.
- ✓ *Deania profundorum* (Smith & Radcliffe, 1912). Arrowhead dogfish.
Black gulper shark

Centrophorus isodon (Zhu, Meng, & Liu, 1981)

Other Names: Blackfin gulper shark, Black gulper shark,
Longnose gulper shark (English); *pating* (local)

Size:
To about 108 cm.

Distinguishing features:
A small dogfish with a dark body, two large dorsal fins with grooved spines, 2nd dorsal about the same size as the 1st; anterior margins to the 2nd dorsal fin and upper caudal lobe dusky; inner margin of pectoral fins elongated, reaching to about mid base of 1st dorsal fin; relatively small gill slits; very long snout, mouth and tongue black, upper teeth similar to lowers, only slightly smaller, also with a strongly oblique cusp; about 25 arched dermal folds on the “chin” behind the mouth.

References:
Lowfin gulper shark

Centrophorus lusitanicus Bocage & Capello, 1864

Other Names: Blackfin gulper shark, Black gulper shark, Longnose gulper shark (English); pating (local)

Size:
To about 160 cm.

Distinguishing features:
A large dogfish with a pearl grey to brown body, two unequally sized dorsal fins with spines, the 1st much larger than the 2nd and distinctively elongated; pectoral rear tips moderately long; denticles low, flat and smooth.

References:
Arrowhead Dogfish

Deania profundorum (Smith & Radcliffe, 1912)

Other Names: *pating* (local)

Size:

To about 79 cm.

Distinguishing features:

A small brownish grey or dark grey dogfish with long snout, two unequally sized dorsal fins with spines, the 1st long, low and relatively smaller than the 2nd, subcaudal keel on underside of caudal peduncle.

References:

Family Dalatiidae
Gray, 1851. Kitefin sharks.

Kitefin sharks, also called as sleeper sharks, are small sharks (<2 m) characterized by having cigar-shaped bodies with narrow heads and rounded snouts, two spineless dorsal fins (except in *Squaliolus*). Several species have specialized bioluminescent organs which appear as black dots mainly on ventral surface.

Of the 10 or more species representing six genera in this family, three species representing two genera occur in the Philippines.

List of species reported to occur in the Philippines:

- ✓ *Squaliolus aliae* Teng, 1959. Smalleye pygmy shark.
- ✓ *Squaliolus laticaudus* Smith & Radcliffe, 1912. Spined pygmy shark.
COOKIE-CUTTER SHARK

Isistius brasiliensis (Quoy & Gaimard, 1824)

Other Names: *pating* (local)

Size:
To about 79 cm.

Distinguishing features:
A small cigar-shaped dogfish with a dark brown body and a distinctive dark collar marking around its throat; two almost equally sized spineless dorsal fins close-set far back near tail, 1st dorsal fin base about over pelvic fin origin; pelvic fins larger than dorsal fins; no anal fin; tips of caudal lobe blackish, margins of other fins white; keel on underside of caudal peduncle; bulbous snout and suctorial lips.

References:
Small-eye pygmy shark

Squaliolus aliae Teng, 1959

Other Names: *pating* (local)

Squaliformes
Dalatiidae

Size:
To about 22 cm; males mature at about 15 cm.

Distinguishing features:
A very small cigar-shaped dogfish with a dark brown to black body and pale fin margins pale; two low dorsal fins, 1st dorsal fin base closer to pectoral fins than to pelvic fins, about half the length of 2nd dorsal fin base; dorsal fin spine present on 1st dorsal fin only, sometimes concealed by skin; 2nd dorsal fin long-based and low, about twice the length of the 1st dorsal fin base; caudal fin nearly symmetrical, with subterminal notch.

Often confused with *Squaliolus laticaudus*. *S. aliae* has a smaller eye diameter (about 46–70% of interorbital width), an angular chevron-shaped upper eye margin, and a pair of prominent lateral papillae on upper lip.

References:
Spined Pygmy Shark
Squaliolus laticaudus Smith & Radcliffe, 1912

Other Names: Big-eye dwarf shark (English); *pating* (local)

Size:
To at least 27.5 cm.

Distinguishing features:
A very small cigar-shaped dogfish with a dark grey to black body, with conspicuously light fin margins; two low dorsal fins, 1st dorsal fin base closer to pectoral fins than to pelvic fins, about half the length of the 2nd dorsal fin base; dorsal fin spine present on 1st dorsal fin only, sometimes concealed by skin; 2nd dorsal fin long-based and low, about twice the length of the 1st dorsal fin base; caudal fin nearly symmetrical, paddle shaped, with subterminal notch.

Often confused with *Squaliolus aliae*. *S. laticaudus* has a larger eye diameter (about 73–86% of interorbital width), a nearly straight upper eye margin, and no papillae on upper lip.

References:
Bramble sharks are large sharks reported to reach up to 3–4 m and characterized by having a short snout and stout body with sparse, large plate-like denticles, small spiracles behind eyes, five gill openings with the 5th gill opening longer than others, two small spineless dorsal fins that are close together, located towards posterior part of body and originating behind pelvic fin origin, no anal fin and a subterminal notch on caudal fin.

Of the two species representing one genus in this family, one species (i.e., *Echinorhinus cookei*) is reported likely to occur in the Philippines due to its presence in closely adjacent areas (Compagno *et al.* 2005) but still unconfirmed to date.

List of species reported to occur in the Philippines:

Family Etmopteridae
Fowler, 1934. Lantern sharks.

Lantern sharks are small deep water sharks (< 0.9 m) previously grouped under the Family Squalidae with common characters such as absence of anal fin, five gill slits, presence of spiracles, and absence of nictitating membrane in lower eyelid. As a separate and independent family, members are characterized by two dorsal fins with grooved spines, a caudal fin with subterminal notch and teeth with prominent central cusp flanked by one or two smaller cusplets.

Of the 47 species representing five genera in this family, three species representing two genera are reported to occur in the Philippines (i.e., Centroscyllium and Etmopterus). One species (i.e., Centroscyllium kamoharai) is suspected to be distinct from the Japanese form (i.e., Centroscyllium kamoharai Abe, 1966). This species may possibly be a new species or part of species complexes in the region and needs taxonomic resolution.

List of species reported to occur in the Philippines:

- Etmopterus brachyurus Smith & Radcliffe, 1912. Shorttail lanternshark.
- Etmopterus lucifer Jordan & Snyder, 1902. Blackbelly lanternshark.
SHORTTAIL LANTERNSHARK
Etmopterus brachyurus Smith & Radcliffe, 1912
Other Names: *pating* (local)

Size:
To at least 50 cm; born at about 15 cm.

Distinguishing features:
A small slender lantern shark with a light brown back, darker brown on sides, merging to black towards belly with greenish sheen, with black longitudinal markings behind pelvic fin (its base inserted in advance of the 2nd dorsal fin spine), caudal peduncle and upper caudal fin, and pale stripe along sides of body between pectoral and pelvic fin; 1st dorsal fin origin about over or slightly behind free rear tip of pectoral fin; dermal denticles present on outer web of 2nd dorsal fin.

The species is often confused with other, similar lanternsharks (*e.g.*, *Etmopterus lucifer*) with linear denticles and long tails.

References:
BLACKBELLY LANTERNSHARK
Etmopterus lucifer Jordan & Snyder, 1902

Other Names: Lucifer shark, Lucifer dogfish (English); *pating* (local)

Size:
To at least 47 cm; males and females mature at about 30 and 34 cm, respectively; born at about 15 cm.

Distinguishing features:
A small slender lantern shark with a light brown back, darker brown on sides, merging to black towards belly with greenish sheen, with black longitudinal markings behind pelvic fin (its bases inserted under the 2nd dorsal fin spine), caudal peduncle and upper caudal fin, and pale stripe sometimes present along sides of body between pectoral and pelvic fin; 1st fin origin slightly behind free rear tip of pectoral fin; dermal denticles present on outer web of 2nd dorsal fin.

The species is often confused with other, similar lanternsharks (*e.g.*, *Etmopterus brachyurus*) with linear denticles and long tails.

References:
Common characters of dogfish sharks (also called as spurdogs or spiny dogfishes) include the presence of two dorsal fins with spines that are not grooved, absence of anal fin, five gill openings, presence of spiracles, absence of nictitating membrane in lower eyelid; teeth on lower jaw not much larger than those on upper jaw; upper precaudal pit usually present; caudal peduncle with a pair of lateral keels. Many species are known from deep water.

Of the 29 or more species representing this family, at least two species are confirmed to be present in the Philippines, *i.e.*, the Indonesian greeneye spurdog *Squalus montalbani* (a resurrected species by Last & Motomura 2007) and the Western longnose spurdog *S. nasutus* (a newly described long-snout spurdog of the ‘*japonicus*-group’ from the Indian Ocean previously identified as *S. japonicus* by Last *et al.* 2007). Many species are very similar and suspected to be part of species complexes (*e.g.*, con-specific with *S. mitsukurii* or *S. japonicus*) that require further taxonomic resolutions. Further investigation of these groups will likely result in more taxa being recognized (*e.g.*, possibly as new records, new species, or endemics for the Philippines).

List of species reported to occur in the Philippines:

- U *Squalus cf. mitsukurii* Jordan & Snyder, 1903. Philippine shortspine dogfish.
- N *Squalus montalbani* Whitley, 1931. Indonesian greeneye spurdog.
- U *Squalus* sp. 1. Philippine fatspined dogfish.
- U *Squalus* sp. 2. Philippine longnose spurdog.
Order Squatiniformes

The order is comprised of only one family (Family Squatinidae) represented by one genus and at least 23 species. Members are characterized by two small spineless dorsal fins behind pelvic fins, five gill openings on sides of head extending on to ventral surface, absence of an anal fin, a flattened ray-like body, a terminal mouth, nostrils with barbels on anterior margins, broad wing-like pectoral fins that are not attached to head, and a hypocercal caudal fin (i.e., lower lobe slightly longer than upper lobe).

Some members attain a maximum length up to 2 m. They feed on a variety of small bony fishes, crustaceans, cephalopods, gastropods and bivalves. They use their highly protrusible, traplike jaws to suddenly snap up prey at high speed. Ovoviviparous, embryos feed solely on yolk.

Family Squatinidae
Bonaparte, 1838. Angel sharks.

The family is represented by only one genus and at least 23 species. Of the three species reported for the Philippines, one is confirmed present (i.e., the Philippine angelshark Squatina callieti although previously misidentified as the Taiwanese angelshark S. formosa. The occurrence of the Japanese angelshark S. japonica remains questionable pending collection and validation of Philippine materials.

List of species reported to occur in the Philippines:

? Squatina formosa Shen & Ting, 1972. Taiwan angelshark.

5 Batoids

Superorder Squalomorphii

As discussed in Chapter 4, Order Rajiformes (batoids) is one of the five orders of squalomorph sharks*, differentiated from the galeomorph sharks by the absence of an anal fin.

Batoids are differentiated from other squalomorph sharks in having a dorso-ventrally depressed (= flattened) body, a ventral mouth and with pectoral fins attached to head.

1. Suborder Myliobatoidei
 Fowler, 1941. Stingrays.

2. Suborder Platyrhinoidei

3. Suborder Pristoidei
 Gill, 1893. Sawfishes.

* See Chapter 3 for the key to the non-batoid squalomorphs.
<table>
<thead>
<tr>
<th>Suborder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajoidei</td>
<td>Skates.</td>
</tr>
<tr>
<td>Rhinobatoidei</td>
<td>Guitarfishes.</td>
</tr>
<tr>
<td>Rhinoidei</td>
<td>Shark rays.</td>
</tr>
<tr>
<td>Rhynchobatoidei</td>
<td>Wedgefishes.</td>
</tr>
<tr>
<td>Torpedinoidei</td>
<td>Electric rays.</td>
</tr>
</tbody>
</table>
Key to Suborders of Rajiformes Reported to Occur in the Philippines

<table>
<thead>
<tr>
<th>1a. Snout elongated into a long, flat rostral saw with enlarged lateral teeth</th>
<th>rostral saw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pristoidei</td>
</tr>
<tr>
<td>(Family Pristoidea)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1b. Snout short to elongated, not saw-like</th>
<th>Pristoidei</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
<td>go to 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2a. Free rear tips of pectoral fins anterior to pelvic-fin origins; dorsal fins large and strongly falcate; caudal fin with a strong ventral lobe</th>
<th>Rhinoidei</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
<td>Rhinidae</td>
</tr>
<tr>
<td>(Family Rhinidae)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2b. Free rear tips of pectoral fins opposite or posterior to pelvic-fin origins; dorsal fins, when present, rounded or angular, but not strongly falcate; caudal fin without a ventral lobe</th>
<th>Rhinoidei</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
<td>go to 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3a. Pelvic fins strongly bilobate, with a narrow anterior lobe and broad posterior lobe; males with curved, hooked alar spines on their discs (skates)</th>
<th>Rajoidei</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Families Anacanthobatidae, Arhynchobatidae, Rajidae)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3b. Pelvic fins not bilobate; males without alar spines on disc</th>
<th>Rajoidei</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
<td>go to 4</td>
</tr>
</tbody>
</table>
4a. Pectoral disc thick and flabby, with a large kidney-shaped electric organ at the base of the fin radials on each side that is visible through the skin; no denticles or medial thorns on dorsal surface of disc and tail, body entirely naked

............... **Torpedinoidei**
(Families Narcinidae, Narkinidae, Torpedinidae)

4b. Pectoral disc thick basally, flat peripherally, usually not flabby and without electric organs; denticles and usually median thorns present on dorsal surface of disc and tail, ventral surface variably denticulate or naked

............... go to 5

5a. Tail thin and slender, ray-like; with one small to moderate-sized dorsal fin or none; a small caudal fin present and well developed, or variably reduced or absent; usually a stinging spine present on tail (absent in *Urogymnus*, *Aetomylaeus*, and some members of Gymnuridae and Mobulidae)

............... **Myliobatoidei**
(Families Dasyatidae, Gymnuridae, Hexatrygonidae, Mobulidae, Myliobatidae, Plesiobatididae, Rhinopteridae, Urolophidae)

5b. Tail very thick, massive, shark-like; tail length longer than the pectoral disc; two subequal dorsal fins, and a large caudal fin; no sting or stinging spine on tail

............... go to 6
6a. Disc broad, flat and rounded or heart shaped; body flatter, not shark-like; pectoral fins large, originating in front of mouth and reaching to snout tip, with free rear tips ending posterior to pelvic fin origins; dorsal fins small, not falcate; scapular (= shoulder) area of disc and tail with strong sharp thorns

 Platyrhinoidei
 (Family Platyrhinoidea)

6b. Disc angular or rounded; body thicker, shark-like; pectoral fins small to moderately large, originating in front of mouth but behind nostrils, reaching to snout tip, with free rear tips ending anterior to pelvic fin origins; dorsal fins large, falcate; midback and tail with a row of small blunt thorns

 go to 7

7a. First dorsal fin originating behind rear tips of pelvic fins; posterior margin of tail straight caudal fin lobe small

 Rhinobatoidei
 (Family Rhinobatidae)

7b. First dorsal fin originating forward of pelvic fin insertions; posterior margin of tail deeply concave; caudal fin lobe absent

 Rhynchobatoidei
 (Family Rhynchobatidae)
Suborder Myliobatoidei
Fowler, 1941. Stingrays.

Stingrays are moderately-sized to large batoids, ranging in size of 100 to 1000 cm (58-300 cm DW), generally characterized by having a short to elongated snout; rhomboidal wing-like pectoral disc, thick basally, flat peripherally, usually not flabby and without electric organs; free rear tips of pectoral fins opposite or posterior to pelvic-fin origins; pelvic fins not bilobate; dorsal fins, when present, moderate-sized, rounded or angular, but not strongly falcate; tail more or less attenuated and slender, length longer than the pectoral disc, usually with a stinging spine (absent in *Urogymnus, Aetomylaeus*, and some members of Gymnuridae and Mobulidae); a small caudal fin present and well developed, or variably reduced or absent; anal fin absent; enlarged, sharp hooked thorns on snout, orbits, shoulders, and along the mid-dorsal axis of trunk and tail, with body generally covered with tiny denticles, naked in some; males without alar spines on disc; jaws protrusible in most; teeth pavement-like.

The suborder is represented by at least 193 species belonging to 10 families globally. At least 65 species belonging to seven families (*i.e.*, Dasyatidae, Gymnuridae, Hexatrygonidae, Mobulidae, Myliobatidae, Plesiobatididae, and Rhinopteridae) are represented in the Philippines; three families not represented are the families Urolophidae (stingarees or round stingrays), Urotrygonidae (American round stingrays or round rays, two genera of which were formerly placed under Urolophidae) and Potamotrygonidae (river or freshwater stingrays).
Families of Suborder Myliobatoidei Reported to Occur in the Philippines

1. Family Dasyatidae
2. Family Gymnuridae
3. Family Hexatrygonidae
4. Family Mobulidae
Gill, 1893. Devil rays.
5. Family Myliobatidae
Bonaparte, 1838. Eagle rays.
6. Family Plesiobatididae
7. Family Rhinopteridae
Key to the Families of Suborder Myliobatoidei Reported to Occur in the Philippines

1a. Head not elevated and laterally demarked from disc by a deep notch; eyes dorsolateral on head, well medial from edge of disc; snout not differentiated into separate rostral or cephalic fins; dorsal fin either absent or small and well behind pelvic-fin bases

......................... go to 2

1b. Head elevated and laterally demarked from disc; eyes lateral on head; anterior part of pectoral fins formed as a separate rostral fin or paired cephalic fins or horns; dorsal fin moderately large, close to or over pelvic-fin bases

......................... go to 5

2a. Six pairs of gill openings; spiracles well separated from eyes

......................... Hexatrygonidae

2b. Five pairs of gill openings; spiracles close to eyes

......................... go to 3

3a. Disc broad and laterally expanded, rhomboidal and at least 1.6 times as wide as long

......................... Gymnuridae

3b. Disc not greatly expanded, diamond-shaped or rounded, but not rhomboidal, usually less than 1.3 times as wide as long

......................... Gymnuridae

...
4a. Caudal fin absent or reduced to dorsal and ventral longitudinal folds on midline of tail; tail more or less elongated and whip-like.

.......................... **Dasyatidae**

4b. A small but well-developed caudal fin present; tail relatively short and not whip-like.

.......................... **Plesiobatidae**

5a. Snout formed into prehensile, elongated, bilobate cephalic fins, laterally based on head; mouth very large, jaws weak and transversely expanded, with very small cuspidate or hexagonal teeth; gills with filter plates

.......................... **Mobulidae**

5b. Snout formed as a single convex or low bilobate pair of rostral fins; mouth small, jaws very stout and longitudinally expanded with large transversely expanded plate-like teeth that form a powerful crushing and grinding mill for eating shellfish; gills without filter plates

.......................... go to 6

6a. Rostral fin single and convex; forehead rounded and not expanded anteriorly or medially notched; one medial row of expanded plate-like teeth in each jaw, usually with three rows of smaller hexagonal teeth on each side of them (except *Aetobatus*, in which the lateral teeth are lost)

.......................... **Myliobatidae**

6b. Rostral fin bilobate and broadly notched medially; forehead expanded anteriorly and forming a ledge over base of rostral fins, its anterior projection with a broad medial notch; three medial rows of expanded plate-like teeth in each jaw, usually with two or three rows of smaller hexagonal teeth on each side of them

.......................... **Rhinopteridae**
Family Dasyatidae

Stingrays are small to very large batoids (with sizes, depending on growth, sex and species, from 40 to 500 cm TL and 18 cm to over 2 m DW). They have discs that are variably depressed, almost circular to rhomboidal in shape, whip-like tails mostly longer than disc length, one to four prominent barbed stinging spines on dorsal surface of tail well behind pelvic fins, no dorsal, anal and caudal fins but with membranous skin folds on the upper and/or lower midlines of their tail behind sting origin. Body usually with denticles, thorns, and tubercles on the dorsal surface of disc and tail. Their heads are raised slightly above the pectoral fins but not demarcated from the rest of disc, eyes on side of head, spiracles well behind eyes, have five pairs of gill openings, ventral mouths armed with numerous small teeth and several lobate papillae on its floor. They can be found in inland, inshore and offshore waters and are viviparous.

Stingrays are represented by at least 88 species belonging to eight genera. At least 10 species are confirmed present in the Philippines (see list on next page). Some of the species in the list possibly belong to species complexes (e.g., Whip stingray *Dasyatis akajei* species complex involving the Philippine red stingray *D. cf. akajei*; the Reticulate whipray *Himantura uarnak* species complex that may also involve the Leopard whipray *H. leoparda* and the Bleeker’s variegated whipray *H. undulata*; the Cowtail stingray, *Pastinachus sephen* with the Philippine form *P. cf. sephen*). Taxonomic work is currently ongoing to confirm species and define the species relationships. About three to four species are potentially new, undescribed and possibly endemic (e.g., Adon’s mask ray *Neotrygon* sp.).

Some species are junior synonyms of another (e.g., Longtail whipray *H. bleekeri* as a junior synonym of the Whitenose whip ray *H. uarnacoides*) while others may have been misidentified or confused with another and needs further confirmation (e.g., Bennett’s cowtail *D. bennetti* for the Whip stingray *D. akajei*; or Sharpnose whipray *H. gerrardi* and the Dwarf whipray *H. walga* for the Scaly whipray *H. imbricata*).
List of species reported to occur in the Philippines:

T *Dasyatis akajei* (Müller & Henle, 1841). Whip stingray.

✓ *Dasyatis zugei* (Bürger In Müller & Henle, 1841). Pale-edged stingray.

? *Himantura gerrardi* (Gray, 1851). Sharpnose whipray.

✓ *Himantura granulata* (Macleay, 1882). Mangrove whipray.

✓ *Himantura uarnak* (Gmelin 1789). Reticulate whipray.

T *Himantura undulata* (Bleeker, 1852). Leopard whipray.

✓ *Himantura walga* (Müller & Henle, 1841). Dwarf whipray.

✓ *Neotrygon kuhlii* (Müller & Henle, 1841). Bluespotted stingray.

U *Neotrygon* sp. Adon’s maskray.

N *Pastinachus atrus* (Macleay, 1883). Eastern cowtail stingray.

T *Pastinachus sephen* (Forsskål, 1775). Cowtail stingray.

✓ *Taeniura lymma* (Forsskål, 1775). Bluespotted ribbontail ray.

✓ *Taeniureps meyeni* Müller & Henle, 1841. Round ribbontail ray.

✓ *Urogymnus asperrimus* (Bloch & Schneider, 1801). Porcupine ray.
PALE-EDGED STINGRAY
Dasyatis zugei (Müller & Henle, 1841)

Other Names: Sharpnose stingray (English); *pagi* (local)

Size:
To at least 29 cm DW (75 cm TL); males and females mature at about 16 and 19 cm DW, respectively; born at 7-10 cm DW.

Distinguishing features:
A small stingray with a dark brown back, pale below; disc profile rhomboidal, snout extremely elongate, pointed, anterior margin angular; floor of mouth without oral papillae; tail relatively short, not banded behind sting; ventral skin fold long and narrow (weak), its height less than twice height of tail above deepest portion, terminating before tip of tail; distance from cloaca to stinging spine less than ½ of disc width; a few small thorns along midline of disc and on tail before sting in adults.

References:
Pink Whipray

Himantura fai Jordan & Seale, 1906

Other Names: *pagi* (local)

Size:
To at least 184 cm DW (500 cm TL); males mature at 108–115 cm DW; embryos of 68 cm DW have been recorded.

Distinguishing features:
A large uniformly tan to greyish pink stingray without obvious patterns of spots or reticulations on disc; disc profile quadrangular; snout very broad, with lobe-like tip; anterior margin straight to slightly convex; floor of mouth with four oral papillae; tail long and whip-like, uniformly dark, not banded, without skin fold; sting situated anteriorly on tail; low flat widely spaced denticles extending from between eyes over disc centre and tail; no enlarged thorn-like denticles on middle of disc and tail. Often confused with *Himantura jenkinsii*.

References:
MANGROVE WHIPRAY

Himantura granulata (Macleay, 1882)

Other Names: Whitetail whipray, Mangrove whipray, Mangrove ray, Whitetail stingray, Macleay’s coachwhip ray (English); *pagi* (local)

Size:
To at least 141 cm DW (>350 cm TL); males mature at about 55–65 cm DW; born at about 14 cm DW.

Distinguishing features:
A large greyish stingray with small white flecks (often also with dark mucous) on disc and a white tail; disc profile almost circular to oval; disc margins mostly dark with black blotches; snout short and broadly triangular, with lobe-like tip; anterior margin straight to slightly convex; floor of mouth with 4 or 5 oral papillae; tail moderately long and whip-like, not banded, without skin fold; 1–2 stings situated anteriorly on tail; very small denticles laterally on disc; band of flat denticles on central disc (in adults); usually without enlarged thorns on disc and tail.

References:
Golden Whipray

Himantura jenkinsii (Annandale, 1909)

Other Names: Rough-back stingray (English); _pagi_ (local)

Size:
To at least 150 cm DW (300 cm TL); males mature at 70–85 cm DW; born at about 23 cm DW.

Distinguishing features:
A large uniformly yellowish brown stingray, rarely with small dark spots on disc near tail base; disc profile rhomboidal; snout short and broad, anterior margin angular; snout with an extended lobe-like tip; floor of mouth with four oral papillae; tail moderately long and whip-like, uniformly dark, not banded, without skin fold; 1-2 stings situated midway on tail; low closely-spaced denticles extending from between eyes over disc centre and tail; row of upright thorns on central disc and tail.

References:
Reticulate Whipray

Himantura uarnak (Gmelin 1789)

Other Names: Marbled stingray, Ring-tailed ray, Whip-tailed ray (English); *katongganon* (Banton); *bitoonan, kilkigan, pangladan, pilisan* (Bikol); *budang* (Kuyunon); *pagi, paging bulik, paging dahunan* (Tagalog); *dahunan* (Visayan)

Size:
To at least 160 cm DW (450 cm TL); males mature at 82–84 cm DW; born at 21–28 cm DW.

Distinguishing features:
A large stingray with small to fine dark spots (in juveniles) and reticulations (in adults) on a light brown back, pale below; no dark transverse band through eyes; disc profile rhomboidal; snout short and broadly triangular, tip pointed; anterior margin almost straight; floor of mouth with five oral papillae; tail long and whip-like, variably banded (often faint in adults), without skin fold; sting situated anteriorly on tail; broad band of flat denticles on central disc (sparse or absent in small juveniles) from between eyes over disc centre and tail; disc with two heart-shaped thorns (not preceded by row of slightly smaller thorns).

References:
DWARF WHIPRAY

Himantura walga (Müller & Henle, 1841)

Other Names: Rough-back stingray (English); _pagi_ (local)

Size:
To at least 18cm DW (40 cm).

Distinguishing features:
A small plain greyish brown stingray, yellowish around disc margins, pale below; disc profile almost oval; snout acute, extending into a prominent tip; anterior margin slightly concave; floor of mouth with two oral papillae; tail moderately long and whip-like, uniformly dark, not banded, without skin fold; usually with two stings situated anteriorly on tail; band of low flat denticles on central disc (poorly developed in young); central disc and tail with row of upright thorns. This species is confused with _H. imbricata_ and requires further study.

References:
BLUESPOTTED STINGRAY

Neotrygon kuhlii (Müller & Henle, 1841)

Other Names: Kuhl’s stingray, Blue-spotted maskray, Spotted stingray (English); *pagi, page, pague, pasa-pasa, dahunan, daragon, kuyampao* (local)

Size:
To at least 70 cm TL; males and females mature at about 22 and 11.5 cm TL, respectively; born at about 11-16 cm TL.

Distinguishing features:
A common stingray with a grey-green-brown back, white below, darker around margins; with bright, variably-sized blue spots on disc; disc profile rhomboidal; snout short with black bar through eyes; floor of mouth with two oral papillae; tail not whip-like, with alternating black and white bands; long, low skin fold on ventral surface, pale at base with dark outer margins; generally with two stings on tail behind pelvic fin; a few short thorns confined to a single row midline of disc; usually no thorns on tail before sting. *N. [Dasyatis] kuhlii* is believed to be a species complex and requires further study.

References:
BLUESPOTTED RIBBONTAIL RAY
Taeniura lymma (Forsskål, 1775)

Other Names: Ribbontailed stingray, Blue-spotted stingray, Fantail ray (English); *pagi* (local)

Size:
To at least 30–35 cm DW (about 70-75 cm TL); males and females mature at 20–22 and 20–24 cm DW, respectively; born at 13–14 cm DW.

Distinguishing features:
A small colorful stingray with large bright blue spots on disc and with blue side-stripes along the tail; disc profile oval, elongated; floor of mouth with two large oral papillae; tail without spots, ventral skin fold on tail relatively deep, extending to tail tip; usually with two stings located near end of tail; central disc smooth to granular (denticles very small); a few short widely-spaced thorns confined to nuchal area, none on tail.

References:
ROUND RIBBONTAIL RAY

Taeniuraops meyeni (Müller & Henle, 1841)

Other Names: Blackblotched stingray, Blackspotted stingray, Bull ray, Fantail stingray, Giant reef ray, Marble ribbontail ray, Round ribbontail ray, Speckle stingray (English); *pagi* (local)

Size:
To at least 180 cm DW (330 cm TL); males mature at 100-110 cm DW; born at 30–35 cm DW.

Distinguishing features:
A large stingray with a uniformly light to dark brown back with black and white blotches and mottlings, usually dark on edges, tail fold uniformly black posterior to sting; disc profile circular; floor of mouth with five oral papillae; tail without spots, ventral skin fold on tail relatively deep, extending to tail tip; usually with one large sting; central disc smooth to granular (denticles very small); about four blunt thorns on disc of juveniles (indistinct in adults), none on tail.

References:
Porcupine Ray
Urogymnus asperrimus (Bloch & Schneider, 1801)

Other Names: Roughskin stingaree, Solander’s ray, Thorny ray (English); *pagi* (local)

Size:
To at least 147 cm DW (about 220 cm TL); males and females mature at 90 and 100 cm DW, respectively.

Distinguishing features:
A large stingray with a uniformly creamy to light brown disc, paler on edges, darker on tail tip; disc profile oval to almost circular; floor of mouth with 3-5 oral papillae; tail without ventral skin fold and stinging spine; upper disc very rough, covered with large, spiny thorns; small, flat, plate-like denticles on central disc and tail.

References:
Family Gymnuridae

Butterfly rays are distinct in having an extremely broad and laterally expanded rhomboidal disc, the width of which is about twice its length (at least 1.6 times) and a very thin and short whip-like tail, shorter than ½ disc width, often with white and black stripes. The base of its disc is thick going flat outwards, usually not flabby and without electric organs. Its snout is short, not differentiated into cephalic fins; its head is continuous with outer anterior margin of pectoral disc; eyes dorsolateral on head; spiracles close to eyes; and have five pairs of gill openings that ventrally located. A single small dorsal fin may either be absent or small on tail of some species, well behind pelvic-fin bases, with or without a stinging spine. Its caudal fin may also be absent or variably reduced. Body entirely naked dorsally and ventrally, with fine denticles (no thorns) on medial dorsal surface of disc and tail (males without alar spines on discs). They are inshore species and are aplacental viviparous.

Globally, the family Gymnuridae is represented by at least 14–21 species in one genus (Gymnura). Previous studies of the family Gymnuridae have divided it into two genera based on the presence (i.e., Aetoplatea) or absence (i.e., Gymnura) of a dorsal fin. A recent study, however, supports the amalgamation of all species into a single genus (i.e., Gymnura) as dorsal fin development is found to be variable (e.g., G. australis) and inconsistent with the two genus hypothesis, thus suggesting that Aeteoplata be designated as a junior synonym (Jacobsen 2007; White 2006). At least two species are confirmed present in the Philippines: i.e., Gymnura poecilura and G. zonura. Two other species are still uncertain (i.e., Gymnura micrura and G. cf. micrura). Nominal records occur for G. micrura in Fowler (1941) and G. cf. micrura in Compagno & Last (1999) but these need further confirmation. The taxonomy of G. cf. micrura is unresolved and needs additional work.

List of species reported to occur in the Philippines:

? Gymnura micrura (Bloch & Schneider, 1801). Smooth butterfly ray.
U Gymnura cf. micrura (Bloch & Schneider, 1801). Smooth butterfly ray.
✓ Gymnura poecilura (Shaw, 1804). Longtailed butterfly ray.
✓ Gymnura zonura (Bleeker, 1852). Zonetail butterfly ray
LONGTAILED BUTTERFLY RAY

Gymnura poecilura (Shaw, 1804)

Other Names: *pagi* (local)

Size:
To at least 91.5 cm DW; females mature by 61 cm DW; born at 23.7 to 25.6 cm DW.

Distinguishing features:
A large butterfly ray, uniformly brown or yellowish brown back with scattered light spots; no dorsal fin or rudimentary dorsal fin at base of tail; tail length from cloaca to tip about half as long as snout-vent length; about nine black bands on tail.

References:
Zonetail Butterfly Ray

Gymnura zonura (Bleeker, 1852)

Other Names: *pagi* (local)

Size:
To at least 102.9 cm DW; males mature by 48 cm DW.

Distinguishing features:
A large butterfly ray, brown-backed white-bellied with numerous dark spots or lines interspersed with large round yellowish spots or irregular blotches, sometimes forming lines or ocelli; with small but noticeable dorsal fin at base of tail.

References:
The family Hexatrygonidae is provisionally represented globally by only one species (i.e., *Hexatrygon bickelli*) that is also recorded in the Philippines. This species is considered rare, with less than five or ten specimens on record, collected from depths between 350 to 1,120 m. Not much is known on its biology but a female specimen shows it to be ovoviviparous. Various species have been reported in other parts of the world based mostly on snout length and shape but these forms are believed to be variations with growth (Last & Compagno 1999).

The species may be similar to the members of family Plesiobatidae (giant stingarees), Urolophidae (common stingarees), and Dasyatidae (common stingrays). It is distinct in having six pairs of gill openings, a greatly elongated, angular, translucent, thick and prehensile snout that lengthens with age, heart-shaped disc the length of which is greater than its width, nostrils widely set with short anterior nasal flaps expanded into very short curtain fused anterior to mouth, no dorsal fin, and a moderately stout short tail with a barbed stinger well behind the pelvic fin and leaf-shaped caudal fin.

List of species reported to occur in the Philippines:
Sixgill Stingray
Hexatrygon bickelli Heemstra & Smith, 1980

Other Names: none

Size:
To at least 168 cm; males mature at about 110 cm; born at about 48 cm.

Distinguishing features:
A deep-water six-gill stingray with purplish brown coloration when alive, white below with dusky margins on disc and pelvic fins, underside of tail dark; heart-shaped disc, length greater than width; snout prehensile and very long, >6 times orbit diameter, grows with age, snout base distinct from rest of disc; no dorsal fin, or skin folds on side or undersurface of tail; caudal fin moderately long, base stout, leaf-shaped toward end; barbed sting on tail behind pelvic fin.

References:
Family Mobulidae
Gill, 1893. Devil rays.

Devil rays, the largest of all rays with disc widths reaching exceeding 9 m, are distinct in having prominent fleshy extensions of the pectoral fins known as cephalic lobes or cephalic fins, projecting forward on each side of the head. Its lozenge-shaped disc is much broader than long, subdivided laterally by notch at eyes into the paired rostral fins and the posterior pectoral disc proper. Its broad head protrudes forward beyond eye level, eyes and spiracles located on sides, and a very broad mouth which is either terminal (i.e., facing forward at end of snout, such in Manta) or subterminal (facing downwards, just before end of snout, such in Mobula). It has weak jaws with very small teeth that form bands in either one or both jaws. It has five moderately broad to very broad gill openings on underside of front half of pectoral disc, with its internal gill arches forming into large and complex filter plates. It has a filamentous tail with a single moderate-sized dorsal fin near its base, sometimes with a serrated stinging spine, but has no caudal fin. Devil rays are found inshore, offshore and oceanic, and are ovoviviparous.

The family Mobulidae is represented by at least 11 species belonging to two genera, Manta and Mobula, members of which are often confused with each other and thus needs careful validation. At least seven species are reported in the Philippines, including three new additions (i.e., Manta alfredi, Mobula japonica and M. tarapanca) based on photos as reproduced here.

The genus Manta was previously considered as monotypic but has been re-evaluated to comprise two species, M. birostris and M. alfredi. The presence of M. alfredi in the Philippines is based on photos taken at the Tubbataha Reefs Natural Park (TRNP), Cagayancillo, Palawan as reported in Aquino et al. (2013). There seems to be various color morphs for the two species of manta and an attempt to visually differentiate the two in terms of color patterns, dermal denticles, and dentition is presented based on Marshall et al. (2009).

List of species reported to occur in the Philippines:

- Manta alfredi (Krefft, 1868). Alfred manta.
- Manta birostris (Walbaum, 1792). Giant manta.
- Mobula eregodoootenkee (Bleeker, 1859). Longhorned mobula.
- Mobula japonica (Müller & Henle, 1841). Spinetail mobula.
- Mobula kuhlii (Müller & Henle, 1841). Shortfin devil ray.
- Mobula tarapacana (Philippi, 1892). Chilean devil ray.
ALFRED MANTA

Manta alfredi (Krefft, 1868)

Other Names: Coastal manta ray, Resident manta ray, Inshore manta ray, Prince Alfred’s ray, Reef manta ray (English); *pagi-sanga*, *sanga* (local)

Size:
To at least 550 cm DW; males and females mature at about 280–300 and 300–390 cm DW, respectively; born at 192 cm DW.

Distinguishing features:
A giant ray with a black back, sometimes with white, more rounded or Y-shaped shoulder patch, white below with ventral dark spots located near the posterior end and between the gill slits, grey edging on disc, mouth white or pale colored; disc profile triangular; without a caudal spine near its dorsal fin; tail short and whiplike; upper surface of disc covered with evenly spaced denticles without cusps; small square shaped teeth on the lower jaw, absent from upper jaw.

References:
GIANT MANTA

Manta birostris (Walbaum, 1792)

Other Names: Giant manta ray, Oceanic manta ray, Pacific manta ray, Pelagic manta ray, Chevron manta ray, Devilfish, Manta ray (English); *pagi-sanga*, *sanga* (local)

Size:

To at least 670 cm DW (possibly to 910 cm DW); males and females mature at about 375 and 380 cm DW, respectively; born at 122–149 cm DW.

Distinguishing features:

A giant ray with a black back, sometimes with white angular or T-shaped shoulder patches, white below with larger ventral dark spots on the abdominal region, grey edging on disc, mouth blackish; disc profile triangular; calcified lump (caudal spine) posterior to dorsal fin; tail whiplike but short; upper surface of disc covered with overlapping multiple-cusped denticles; small square shaped teeth on the lower jaw, enlarged teeth on the upper jaw.

References:

LONGHORNED MOBULA
Mobula eregoodootenkee (Bleeker, 1859)

Other Names: Longfin devilray, Pygmy devilray, Ox ray, Smaller devilray, Eregoodoo (English); *buntok-talibatab, pagi-sanga* (local)

Size:
To at least 100 cm DW.

Distinguishing features:
A small devilray with a brownish-grey back, white below with semicircular dark blotch along anterior pectoral-fin margins; disc broad and short; head narrow and long, prominent cephalic lobes, length from fin tip to mouth corner more than 16% of DW; dorsal fin entirely dark; quadrangular tail base, no spine or white tip on dorsal fin; subterminal mouth, teeth usually in both jaws.

References:
SPINETAIL MOBULA

Mobula japonica (Müller & Henle, 1841)

Other Names: Japanese devilray, Spinetail devilray (English); *pasa-pasa, pagi-sanga, sanga* (local)

Size:
To at least 310 cm DW; males and females mature at 207 and 205 cm DW, respectively; born at 85 cm DW.

Distinguishing features:
A medium to large-sized devilray with a bluish-black back, with two concentric patches in shoulders of juveniles, fading in adults; white below, with dark patches in adults; disc broad and short; head narrow and short, prominent cephalic fins or lobes, length from fin tip to mouth corner less than 16% of DW; anterior margin of snout slightly concave; pectoral fins with slightly curved tips, anterior margins straight or slightly convex; dorsal fin tip white; tail long, subequal to or longer than disc width, with a strong spine; mouth subterminal, inside of mouth black; teeth small, tooth height greater than crown width.

References:
SHORTFIN DEVIL RAY

Mobula kuhlii (Müller & Henle, 1841)

Other Names: Lesser devilray (English); *pagi-sanga, sanga* (local)

Size:
To at least 120 cm DW.

Distinguishing features:
A small devilray with a dark brown-blue back, white below with dark patch along anterior pectoral-fin margins; disc broad and short; head narrow and short, prominent cephalic fins or lobes, length from fin tip to mouth corner less than 16% of DW (or about 12–14% DW); anterior margin of snout slightly concave; pectoral fins with slightly curved tips, anterior margins not undulated, slightly convex; dorsal fin with a white spot at apex; quadrangular tail base; tail shorter than disc, with no spine; subterminal mouth, teeth transversely elongated, lozenge-shaped, with fine rugosities on crown.

References:
CHILEAN DEVIL RAY

Mobula tarapacana (Philippi, 1892)

Other Names: Box ray, Devil ray, Greater Guinean mobula, Sicklefin devil ray, Spiny mobula (English); *pagi-sanga* (local)

Size:
To at least 328 cm DW (max: 360 cm DW), commonly around 250 cm DW; born at 105 cm DW.

Distinguishing features:
A small to large devilray with a greyish-black back, white below with darker posterior pectoral-fin margins; disc narrower and strongly falcate; head narrow and long, prominent but relatively short cephalic lobes, length from fin tip to mouth corner less than 16% of DW; spiracles slitlike; dorsal fin plain; tail much shorter than disc, without spine on tail base; no spine or white tip on dorsal fin; subterminal mouth, teeth usually in both jaws.

References:
SMOOTHTAIL MOBULA

Mobula thurstoni (Lloyd, 1908)

Other Names: Bentfin devilray (English); *pagi-sanga, sanga* (local)

Size:
To at least 220 cm DW.

Distinguishing features:
A moderate-sized devilray with a dark blue to black back, white below with dark patch along anterior pectoral-fin margins; disc broad and short; head narrow and short, short head bearing short cephalic fins, length from fin tip to mouth corner less than 16% of DW (or about 12–14% DW); anterior margin of snout slightly concave; pectoral fins with silvery slightly curved tips, anterior margins undulated (double bent to the front margins), distinctively concave; dorsal fin with a white spot at apex; quadrangular tail base; tail shorter than disc, with no spine; subterminal mouth, teeth hexagonal with large rugosities on crown.

References:
Eagle rays are medium to large, heavy bodied fishes characterized by having a diamond-shaped disc, its width greater than its length, a rounded snout (rather than indented anteriorly) with no paired fleshy lobes, a head that protrudes slightly over the disc, fusing with the pectoral fins just beside or below the eyes. Both eyes and spiracles are on side of head. It has a broad, ventral mouth and powerful jaws with plate-like crushing teeth arranged in one to seven rows, and five gill openings, length about or longer than eye length. It has a small dorsal fin with or without a venomous spine near base of a thin and filamentous tail, which is longer than its disc and has no a caudal fin. Its body has denticles and thorns, around eyes and along midline of disc in some species. These are mainly inshore species and are viviparous.

Members of this family are similar to the members of family Rhinopteridae (Cowhose rays). Rhinopterids differ in having an elevated head, with snout notched medially forming a bilobed rostral part of the disc. Myliobatids have a snout that is not notched medially but forms a single rounded or rounded-angular lobe.

Globally, the family Myliobatidae is represented by at least 21 species belonging to three genera. At least one species is confirmed present in the Philippines (i.e., the Ornate eagle ray *Aetomylaeus vespertilio*). Some other species in the list may possibly belong to species complexes, i.e., the Spotted eagle ray *Aetobatus narinari* species complex (comprising of at least four species across its range to include the two Philippines forms *Aetobatus cf. narinari* and *A. cf. guttatus*) and which are found to be distinct from the Ocellated eagle ray *A. ocellatus*, a synonym of the Indian eagle ray *A. guttatus*. Two other species remain uncertain: the mottled eagle ray *Aetomylaeus maculatus* and the Banded eagle ray *A. nichofii*. Nominal records for the Ocellate eagle ray *A. milvus* (Valenciennes, 1841) (in Casto de Elera, 1895; Fowler, 1941; Compagno & Last, 1999) is attributed to be that of a juvenile *A. maculatus*. In turn, *A. milvus* is considered most likely a synonym of *A. maculatus* (White 2006). Further investigation is recommended.

In addition to the two species belonging to the spotted eagle ray complex, at least one other species is potentially new, undescribed and possibly endemic (i.e., the Philippine kite ray suspected to be conspecific with the Japanese forms *Myliobatis tobijei*). Initial descriptions are discussed in Compagno *et al.* 2005.

List of species reported to occur in the Philippines:

T	*Aetobatus narinari* (Euphrasen, 1790). Spotted eagle ray.
U	*Aetobatus cf. narinari* (Euphrasen, 1790). Spotted eagle ray.
U	*Aetobatus cf. guttatus* (Shaw, 1804). Indian eagle ray.
?	*Aetomylaeus maculatus* (Gray, 1834). Mottled eagle ray.
✓	*Aetomylaeus vespertilio* (Bleeker, 1852). Ornate eagle ray.
U	*Myliobatis cf. tobijei* Bleeker, 1854. Philippine kite ray.
ORNATE EAGLE RAY
Aetomylaeus vespertilio (Bleeker, 1852)

Other Names: Reticulate eagle ray (English); *pagi manok* (local)

Size:
To at least 300 cm DW (possibly to 350 cm DW); males mature by 170 cm DW.

Distinguishing features:
A relatively large but uncommon eagle ray, with a greenish brown back, a network of thin dark transverse lines anteriorly and whitish rings and dark reticulations posteriorly, white undersides; fleshy ridge on side of head not connected to edge of disc; dorsal-fin posterior margin upright, its origin posterior to pelvic-fin insertions; tail long and thin, without spine; edge of nasal curtain near mouth almost straight.

References:
Plesiobatids or giant stingarees are distinctively large, with its round pectoral disc reaching to at least 270 cm. Additional distinctive features include an angular snout, greatly elongated nostrils, nasal curtain incompletely united, not reaching the mouth, a dorsal surface uniformly covered with fine denticles, five gill openings, no dorsal fin, a moderately stout short tail with a barbed stinger well behind the pelvic fin, and leaf-shaped caudal fin.

The family (Plesiobatididae) is represented by only one species (i.e., *Plesiobatis daviesi*) which is also recorded in the Philippines. This species is considered to be relatively common, found in depths between 275–680 m. Not much is known on its biology, but possibly viviparous.

Plesiobatids or giant stingarees are similar to other stingarees (family Urolophidae), stingrays (family Dasyatidae), and the Sixgill stingray (family Hexatrygonidae). The urolophids differ in being generally smaller, with adults less than 90 cm in length, having a dorsal surface either naked (for most species) or covered with coarse denticles, a less expanded nostrils, a narrower nasal curtain that reaches the mouth which has oral papillae, and shorter caudal fin usually less than ½ tail length. Dasyatids have a long and whip-like tail, without a caudal fin but with longitudinal fin-folds variably developed or absent. For the monotypic family Hexatrygonidae, apart from having six pairs of gill openings distinctive of the species, adults also has a greatly elongated thick snout and with spiracles located well behind eyes.

List of species reported to occur in the Philippines:

Deepwater stingray

Plesiobatis daviesi (Wallace, 1967)

Other Names: Giant stingaree (English); *pagi* (local)

Size:
To at least 270 cm; males and females mature at about 130–172 and 189–200 cm, respectively; born at about 50 cm.

Distinguishing features:
A giant deepwater stingray with a purplish brown to grey body when alive, sometimes with irregular dusky blotches or spots on back, white below with dusky margins on disc, underside of tail dark; snout moderately long, more than six times orbit diameter; broadly angular; rounded disc, upper surface with small granular denticles; no dorsal fin, or skin folds on side or undersurface of tail; tail moderately long, base stout, leaf-shaped caudal fin; barbed sting on tail behind pelvic fin.

References:
Members of this family are similar to the members of family Myliobatidae (eagle rays) and Mobulidae (devil rays). Rhinopterids are distinct in having an elevated head, an angular rhomboidal disc subdivided into bilobate rostral and pectoral parts, five gill openings, nostrils not greatly expanded, long anterior nasal flaps medially expanded and fused into a broad, elongated nasal curtain overlapping mouth, plate-like teeth normally in seven to nine rows in either jaws, sometimes higher, a single moderate-sized dorsal fin, a whip-like tail with a barbed sting on dorsal surface near tail base, close behind pelvic fins, and without a caudal fin.

Members of this family are similar to the members of family Myliobatidae (eagle rays). Myliobatids also have an elevated head but its snout is not notched medially rather forms a single rounded or rounded-angular lobe. Rhinopterids are distinct in having an elevated head, with snout notched medially forming a bilobed rostral part of the disc.

The family Rhinopteridae is represented by at least 11 species belonging to one genera, *Rhinoptera*. Only one species (*i.e.*, *Rhinoptera javanica*) is confirmed present in the Philippines.

List of species reported to occur in the Philippines:

JAVANESE COWNOSE RAY
Rhinoptera javanica Müller & Henle, 1841

Other Names: Flapnose ray, Cow-nosed ray (English); *palimanok, ogaog, banogan, pagi* (local)

Size:
To at least 150 cm.

Distinguishing features:
A relatively large stocky cownose ray uniformly dark greyish brown above and white below; disc broad, short and diamond-shaped, rostral margin deeply notched behind eye; head thick and broad; forehead bilobed, with a pair of lobe-like flaps located underneath; whip-like tail; single dorsal fin on tail base; teeth plate-like, upper teeth in seven rows.

References:
SUBORDER PLATYRHINOIDEI
MCEACHERAN, DUNN & MIYAKE, 1996.
FANRAYS AND THORNBACKS.

FAMILY PLATYRHINIDAE
JORDAN, 1923. FANRAYS AND THORNBACKS.

The suborder is represented by one family (Family Platyrhinidae) with at least three species characterized by having enlarged, sharp hooked thorns on snout, orbits, shoulders, and along the mid-dorsal axis of trunk and tail, with body generally covered with tiny denticles. Its head is large and broad, flat and round, and tail is shark-like with tail length longer than the pectoral disc.

Only one species (i.e., Platyrhina sinensis) is nominally listed in the Philippines by Casto de Elera (1895) but which needs further validation.

LIST OF SPECIES REPORTED TO OCCUR IN THE PHILIPPINES:

? Platyrhina sinensis (Bloch & Schneider, 1801). Fanray.
Suborder Pristoidei
Gill, 1893. Sawfishes.

Family Pristidae
Bonaparte, 1838. Modern sawfishes.

The suborder is represented by one family (Family Pristidae) with at least five species belonging to two genera (i.e., Genus Anoxypristis and Genus Pristis) collectively referred to as the modern sawfishes. Members are characterized by a long elongated saw-like snout with enlarged lateral teeth.

Sawfishes (Pristidae) may be confused with saw sharks or members of the family Pristiophoridae in having a rostral saw. Major differences, however, occur in that sawfishes have a uniformly-sized teeth along their elongated snouts (as opposed to the alternating large and small teeth in saw sharks), absence of barbels on each side of the rostrum (presence of barbels on rostrum is unique to saw sharks), a broad wing-like pectoral fins attached to head, forming a distinct pectoral disc characteristic of rays (i.e., a “ray-like" body as opposed to a separate head and pectoral fins or “shark-like” body for sawsharks), and five ventrally located gill openings as in other batoids (sawsharks have five to six gill openings at the sides of head). Members of both families, however, are reported to be ovoviviparous, with embryos feeding solely on yolk.

The taxonomy of the family Pristidae is undergoing some modifications. Previously, there were seven species reported globally. However, based on molecular and morphological characters (Faria et al. 2013), two of these species (i.e., the Indo-west Pacific Freshwater sawfish Pristis microdon Latham, 1794 and the Atlantic Large-tooth sawfish *P. perotteti* Müller & Henle, 1841) are now lumped together with the Common sawfish *Pristis pristis* (Linnaeus, 1758), making it only five species known globally. The Common sawfish and two other species (i.e., the Knifetooth sawfish Anoxypristis cuspidata and the Green sawfish *Pristis zijsron*) are reported to occur in the Philippines. One species, the Smalltooth sawfish *Pristis pectinata*, is of uncertain status and needs further validation.

List of species reported to occur in the Philippines:

- ✓ Anoxypristis cuspidata (Latham, 1794). Knifetooth sawfish.
- ✓ Pristis pristis (Linnaeus, 1758). Common sawfish
- ✓ Pristis zijsron Bleeker, 1851. Green sawfish.
Knifetooth sawfish
Anoxypristis cuspidata (Latham, 1794)

Other Names: Narrow sawfish, Pointed sawfish (English); *pating* (local)

Size:
To at least 470 cm, unconfirmed reports to 550-610 cm; pregnant females found at 246–282 cm; born at 43–61 cm.

Distinguishing features:
A moderate-sized sawfish with a gray body, greyish to white below, pale fins; about 18–22 rostral teeth present on each side of saw, absent a quarter down to its base; rostral teeth broad, greatly flattened and triangular slightly closer together near tip than at middle of saw; very narrow nostrils with small nasal flaps; 1st dorsal fin with origin over or slightly posterior to pelvic fin insertions; a secondary caudal keel below the first one on the caudal-fin base; caudal fin with a shallow subterminal notch and a long, prominent ventral lobe.

References:
COMMON SAWFISH

Pristis pristis (Linnaeus, 1758)

Other Names: Largetooth sawfish, Freshwater sawfish (English); *barabad, barasan, buntok lagari; manglangpit, pakangan, tag-an* (local)

Size:
To at least 700 cm, commonly about 500 cm; males and females mature between 240–300 cm; born at about 70–90 cm.

Distinguishing features:
A large heavily-bodied sawfish, yellow to gray body, pale below, yellow-brown fin webs; short but massive saw which is broad-based, strongly tapering and with 14-23 very large teeth, present on each side of saw starting close to base; rostral teeth moderately flattened, elongated and peg-like; rostral teeth near tip and at middle of saw a similar distance apart; short, broad and transverse nostrils with broad and large nasal flaps; 1st dorsal fin origin considerably anterior to pelvic fin origin; Pectoral fins high and angular, no secondary caudal keel below the first one on the caudal-fin base; caudal fin without a subterminal notch but with a short, ventral lobe. (Note: The Largetooth sawfish is a euryhaline species, with populations occurring in freshwater marine and estuarine environments at certain life stages).

References:
GREEN SAWFISH
Pristis zijsron Bleeker, 1851
Other Names: Common sawfish (English); *pating* (local)

Size:
To at least 500 cm, reaching to 730 cm; males mature by 430 cm.

Distinguishing features:
A moderate-sized sawfish with a greenish or olive body, pale below; about 23–34 unevenly-spaced teeth but present on each side of saw, starting close to base; rostral teeth slender with a groove along posterior margins; rostral teeth much closer together near tip than at mid-length of saw; short, broad and transverse nostrils with broad and large nasal flaps; 1st dorsal fin origin slightly behind the pelvic fin origin; pectoral fins broad based; no secondary caudal keel below the first one on the caudal-fin base; caudal fin without a subterminal notch but with a ventral lobe.

References:
Suborder Rajoidei
Garman, 1913. Skates

Members of the Suborder Rajoidei are characterized with the following: a short to elongated snout; a disc quadrangular to rhomboidal in shape; free rear tips of pectoral fins opposite or posterior to pelvic-fin origins; 0-2 rounded or angular but reduced dorsal fins located far posterior on tail; pelvic fins strongly bilobate, with a narrow anterior lobe that is not leg-like and broad posterior lobes conjoined basally; males with curved, hooked alar spines on their discs (skates); a moderately stout tail, variably covered with denticles and thorns and with lateral folds; weak electric organs developed from caudal muscles; reduced caudal fin without a ventral lobe. They have a transversed to arched mouth, with numerous teeth, and five pairs of ventrally-located gill openings. They are oviparous with eggs in a horny capsule with four long tips. Based on fossil records, a reversal to egg-laying from live-bearing was observed in this group.

The suborder is represented by at least 285 species belonging to three families, namely, Anacanthobatidae (smooth skates or legskates), Arhynchobatidae (softnose skates), and Rajidae (hardnose skates).

<table>
<thead>
<tr>
<th>Family</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1. Family Anacanthobatidae
von Bonde & Swart, 1923.
Smooth skates or leg skates |
| 2. Family Arhynchobatidae
Fowler, 1934. Softnose skates. |
| 3. Family Rajidae
Blainville, 1816. Hardnose skates. |
Key to Families of the Suborder Rajoidei Reported to Occur in the Philippines

| 1a. Anterior and posterior pelvic fin lobes completely separate, with the anterior pelvic fin lobe looking “leg-like”, with expanded distal “feet”; disc naked (no denticles or thorns) except for alar spines in males; no dorsal fins; tail very slender, caudal fin long and low; snout long usually with anterior filament or leaf-like appendage | ![Anacanthobatidae Diagram](image)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anacanthobatidae</td>
<td>Arhynchobatidae</td>
<td>Rajidae</td>
</tr>
</tbody>
</table>

| 1b. Anterior and posterior pelvic fin lobes fused or conjoined at the base, with the anterior pelvic fin lobe not looking “leg-like” and without distal expansion; disc and tail with denticles and thorns; usually two dorsal fins, low and far posterior on tail; tail moderately stout, caudal fin greatly reduced; snout long without a long anterior filament or leaf-like appendage | ![Anacanthobatidae Diagram](image)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anacanthobatidae</td>
<td>Arhynchobatidae</td>
<td>Rajidae</td>
</tr>
</tbody>
</table>

| 2a. Rostral cartilage reduced, snout soft; clasper glans of adult males not greatly expandable, usually without rhipidion or shield; clasper ventral terminal cartilage spoon-shaped, without a sharp lateral edge and not forming an external clasper shield; clasper dorsal terminal cartilages 2 and 3 arranged in parallel | ![Arhynchobatidae Diagram](image)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Arhynchobatidae</td>
<td>Rajidae</td>
</tr>
</tbody>
</table>

| 2b. Rostral cartilage stout, snout hard; clasper glans of adult males greatly expandable, with a rhipidion and shield; clasper ventral terminal cartilage not spoon-shaped, with a sharp lateral edge that forms the shield; clasper dorsal terminal cartilages 2 and 3 arranged in series | ![Rajidae Diagram](image)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajidae</td>
<td>Rajidae</td>
</tr>
</tbody>
</table>
Family Anacanthobatidae
von Bonde & Swart, 1924. Smooth skates.

Members of this family are very similar in external form and often regarded as a subfamily of the Rajidae. Smooth skates are characterized in having a smooth or naked body, _i.e._, disc and tail without dermal denticles (except for alar spines in males), hence their name, from Greek _an_ meaning “without”, _acantha_ meaning “thorn”, and _bathys_ meaning “deep”. Other distinctive features include the following: a large, flat angular or subangular pectoral disc; long and pointed snout, usually with a terminal filament of varying length arising from a small, bluntly rounded protuberance at the tip; five pairs of small, ventral gill slits; expanded nasal flaps not fused medially as nasal curtain; subdivided pelvic fin, anterior lobe formed as slender “legs” with expanded distal “feet”; slender tail, a bit shorter than disc, no dorsal fins, without sting, but with membranous caudal fin.

At least 10 species in two genera are known globally and only one species is confirmed present in the Philippines (_i.e._, _Sinobatis borneensis_ or Borneo legskate). Some authors consider this species as a con-specific with Blackbodied leg skate _S. melanosoma_ (Chan, 1965), with which it is often confused. They are bottom dwelling fishes found on the continental slopes of tropical and subtropical waters.

List of species reported to occur in the Philippines:

✔ _Sinobatis borneensis*_ (Chan, 1965). Borneo legskate.

* Taxonomic work on the species resulted to a genus change from Anacanthobatis to Sinobatis.
BORNEO LEGSKATE

Sinobatis borneensis (Chan, 1965)

Other Names: *pagi* (local)

Size:
To at least 39.9 cm; males mature at about 26 cm.

Distinguishing features:
A small thin-disc deep-water skate with a pale greyish-brown body, paler underside; snout broad and long with rostral filament; eyes small further away from snout; pelvic anterior lobe leg-like and completely separate from posterior lobe; pelvic posterior lobe fused with slender tail.

References:
Members of this family are very similar in external form and often regarded as a subfamily of the Rajidae. Softnose skates are distinct in having a slender reduced rostral cartilage and flexible or “soft” snout (Rajidae have a firm or “hard” snouts, with a stout rostral cartilage) but without a terminal filament at the tip. Other distinctive features include the following: a large, broad, flat rhomboidal or heart-shaped pectoral disc; with dermal denticles on dorsal surface of disc, snout, orbits, shoulders and tail (but less spinous than Rajidae); relatively shorter snout (as compared with Anacobanthidae); five pairs of small, ventral gill slits; expanded nasal flaps separated medially forming a nasal curtain; pelvic fin lobes fused or conjoined at the base, with the anterior pelvic fin lobe not looking “leg-like” and without expanded distal “feet”; usually two dorsal fins; slender tail, a bit longer than disc, without stinging spine, caudal fin small, rudimentary.

Globally, at least 94 species belonging to nine genera are known. At least two species (i.e., the velvet skate *Insentiraja subtilispinosa* and the Sulu sea skate *Okamejei jensenae*) are confirmed present (but no species account is made available). Shape differences are reported to be evident among populations of the velvet skate across its range and further investigation has been recommended (Last & Compagno 1998). The Sulu sea skate is recently described and was referred to as the Philippine ocellate skate *Okamejei* sp. 1 in Compagno et al. (2005), possibly endemic. There are nominal records of four other species but their occurrence in the Philippines remain questionable and need further investigation: Black sand skate *O. boesemani*, Yellow-spotted skate *O. hollandi*, Spiny rasp skate *O. kenojei*, and Bigeye skate *O. meerdervoortii*.

List of species reported to occur in the Philippines:

- **N** *Okamejei jensenae* Last & Lim, 2010. Sulu Sea skate.
Family Rajidae
Blainville, 1816. Hardnose Skates.

Hardnose skates are distinct in having a firm or “hard” snouts, with a stout rostral cartilage (Arhynchobatidae have slender reduced rostral cartilage and flexible or “soft” snout) but without a terminal filament at the tip. Other distinctive features include a large, broad, flat rhomboidal or heart-shaped pectoral disc; with dermal denticles on dorsal surface of disc, snout, orbits, shoulders and tail (more heavily spinouse than arhynchibatids; relatively shorter snout (as compared with Anacobanidae); five pairs of small, ventral gill slits; expanded nasal flaps separated medially forming a nasal curtain; pelvic fin lobes fused or conjoined at the base, with the anterior pelvic fin lobe not looking “leg-like” and without expanded distal “feet”; usually two dorsal fins; slender tail, a bit longer than disc, without stinging spine, caudal fin small, rudimentary.

Globally, at least 168 species belonging to 13 genera are known in this family. At least three species are confirmed present (only one the Ridgeback skate Dipturus amphispinus, a newly described species, is provided with a species account) while two more are potentially new, still undescribed, possibly endemics. The genus Dipturus is in need of a taxonomic revision (Last et al. 2008). The Ridgeback skate *D. amphispinus* is the Philippine longnose skate *Dipturus sp. 1* referred to in Compagno et al. 2005.

List of species reported to occur in the Philippines:

- N *Dipturus tengu* (Jordan & Fowler, 1903). Goblin skate.
- U *Dipturus* sp. 2. Philippine skate.
- U *Dipturus* sp. 3. Seret’s Philippine skate.
RIDGEBACK SKATE

Dipturus amphispinus Last & Alava, 2013

Other Names: Philippine longsnout skate, Titled thorn skate (English); *pagi* (local)

Size:
Males to at least 66.6 cm; females to at least 88.3 cm.

Distinguishing features:
A small thin-disc skate with a pale greyish-brown body, paler underside; distinct in having two prominent and variably-defined rows of strongly tilted thorns forming a ridge on the median disc (Greek “*amphi*” meaning on both sides or double and the Latin “*spinus*” meaning thorn) and well-developed scapular thorns on each side of the disc; eyes small further away from snout; pelvic anterior lobe leg-like and completely separate from posterior lobe; pelvic posterior lobe fused with slender tail.

References:
Suborder Rhinobatoidei
Garman, 1913. Guitarfishes.

Family Rhinobatidae
Müller & Henle, 1837. Guitarfishes.

The suborder is represented by a single family (Rhinobatidae). Members have the body form intermediate between that of shark (e.g., by having shark-like fins) and a skate (with pectoral fins attached to the head). Similar looking families include the wedgefishes (Family Rhynchobatidae) and the shark rays (Family Rhinidae).

Rhinobatids or guitarfishes are small to medium-sized rays with variably-shaped discs from oval to wedge-shaped or shovel-shaped. They have two small dorsal fins with 1st dorsal fin originating behind pelvic fins; moderately large pectoral fins originating in front of nostrils, its free rear tips ending opposite or posterior to pelvic fin origins; a long broad and flattened tail, without a sting, but posterior margin straight; caudal fin with a well-developed upper lobe but without a ventral lobe. Its mid-dorsal line, shoulders, eyes and sometimes on snout with smaller thorns or dermal denticles, mouth with numerous, small blunt teeth, nostrils with or without an internasal flap, and with spiracular folds. They are ovoviviparous with fully developed young at birth. They feed on bottom organisms, including molluscs and crustaceans, but will also take small fishes.

At least 48 species in five genera are known globally. Only one species (i.e., the Giant shovelnose ray *Glaucostegus typus*) is confirmed present in the Philippines. One other species, i.e., the Sharpnose guitarfish *G. granulatus*, an Indian Ocean species, is often confused with *G. typus* and need validation. A third species, i.e., the Halavi guitarfish *G. halavi* is likely a misidentification.

Guitarfishes referred to as *Rhinobatos schlegelii* Müller & Henle comprise a species complex in the Indo–Pacific. The Philippine guitarfish is recently described by Last et al. (2014) as *Rhinobatos whitei*. Initially referred to as *Rhinobatos cf. schlegelii* in Compagno et al. (2005), this species is now established as not conspecific to *R. schlegelii*. The presence of Taiwan guitarfish *R. formosensis* recorded off Manila Bay needs further validation.

List of species reported to occur in the Philippines:

- ✔ *Glaucostegus typus* (Bennett, 1830). Giant shovelnose ray.
- ? *Rhinobatos formosensis* Norman, 1926. Taiwan guitarfish.
GIANT SHOVELNOSE RAY
Glaucostegus typus (Anonymous [Bennett], 1830)

Other Names: Bennet’s shovelnose guitarfish, Common shovelnose ray (English); *pating* (local)

Size:
To at least 270 cm.

Distinguishing features:
A large shovelnose ray with brown to light back and white undersides, without diagonal and transverse bands and without an angular marking behind the eyes; snout pale, narrow-tipped, not expanded into a club-like knob, and more acutely angular, with preoral length 2.6 to 3.3 times mouth width; nostrils diagonal, greatly expanded, width 0.8 to 1.0 times mouth width, 2.2 to 2.4 times internarial space; spiracles with a pair of narrow folds on their posterior margins.

References:
Suborder Rhinoidei

Family Rhinidae
Müller & Henle, 1841. Shark rays.

The suborder is represented by one family with one species, the shark ray, *Rhina ancylostoma*. Distinctive features are: two large shark-like dorsal fins (i.e., falcate or sickle-shaped); a broad and rounded snout; a deep indentation separating head from pectoral fin origin on each side; caudal fin with a strong ventral lobe; thick prominent ridges in front of eyes; mid dorsal line and shoulders covered with large triangular thorns, dermal denticles, or spines.

The family is closely associated with the guitarfishes of the genus *Rhynchobatus* (Family Rhynchobatidae). Some authors lump *Rhina* and *Rhynchobatus* into a single family (i.e., family Rhinidae of the order Rhinobatiformes). Morphologically, genus *Rhina* is similar to the genus *Rhynchobatus* in having large shark-like fins. *Rhynchobatus*, however, has a more angular and wedge-shaped snout, rostral ridges and spiracular folds, among others.

Family Rhinobatidae (guitarfishes) is also similar to Rhinidae (sharks rays) but its body is less thick and less shark-like; dorsal fins smaller, with 1st dorsal surface plain without spots or ocelli; pectoral fin origin in front of nostrils, its free rear tips posterior to the pelvic fin origins.

List of species reported to occur in the Philippines:

- *Rhina ancylostoma* Bloch & Schneider, 1801. Shark ray.
SHARK RAY
Rhina ancylostoma Bloch & Schneider, 1801
Other Names: Bowmouth guitarfish, Mud skate (English); *anonan* (local)

Size:
To at least 300 cm; born at 45 cm.

Distinguishing features:
A large and heavily built batoid with a wide and thick body, bluish to brownish grey above and white below; numerous white spots scattered over body, fins and tail; a white-edged black marking above each pectoral fin, and two dark transverse bands atop the head between the eyes; black spots on head and shoulders but no eyespots or ocelli; short, wide, and flattened head with an evenly rounded snout; medium-sized eyes and large spiracles, subterminal mouth forms a W-shaped undulating line; long nostrils transversely oriented with well-developed skin flaps on anterior margins; teeth low and blunt with ridges on the crown, arranged in winding bands of around 47 upper and 50 lower tooth rows.

References:
Suborder Rhynchobatoidei
McEachran, Dunn & Miyake, 1996.
Wedgefishes.

Family Rhynchobatidae
Garman, 1913. Wedgefishes.

The suborder is represented by a single family, members of which have the body form intermediate between that of a shark (e.g., by having shark-like fins) and a skate (with pectoral fins attached to the head). Wedgefishes have large falcate or sickle-shaped fins, angular and wedge-shaped head but without indentation separating it from pectoral fin origin on each side; mid dorsal line, shoulders, eyes and sometimes on snout with smaller thorns or dermal denticles; and spiracular folds. They are ovoviviparous with their young born fully developed. They feed on bottom organisms, including molluscs and crustaceans, but will also take small fishes.

Rhynchobatids or wedgefishes are similar to the guitarfishes (Family Rhinobatidae), with some authors ascribing them as a subfamily Rhynchobatinae of the family Rhinobatidae. Rhynchobatids are distinct from rhinobatids in having an overlapping pectoral and pelvic fins and a caudal fin with a well-developed ventral lobe, a mouth with numerous, small blunt teeth, nostrils without an internasal flap, and havingspiracular folds.

Wedgefishes are also closely associated with the shark rays (Family Rhinidae). Some authors lump genus Rhynchobatus and genus Rhina into a single family (i.e., family Rhinidae of the order Rhinobatiformes). Rhina, however, has a more broad and rounded snout, thick prominent ridges in front of eyes, deep indentations separating head from pectoral fin origins, its mid dorsal line and shoulders are covered with dermal denticles, and has a well-developed caudal fin.

Of the six species known globally, at least one species is confirmed present in the Philippines (i.e., the Whitespotted wedgefish Rhynchobatus australiae). Two more species need confirmation: a species close to the Smoothnose wedgefish R. laevis (Bloch & Schneider, 1801) which is nominally listed based on its occurrence in the region, and an undescribed species, i.e., the Broadnose wedgefish Rhynchobatus sp. 2, which is generally mistaken for the Western Indian Ocean Giant guitarfish Rhynchobatus djiddensis.

List of species reported to occur in the Philippines:

✓ Rhynchobatus australiae Whitley, 1939. Whitespotted wedgefish.
?
Rhynchobatus laevis (Bloch & Schneider, 1801). Smoothnose wedgefish.
U Rhynchobatus cf. laevis (Bloch & Schneider, 1801). Smoothnose wedgefish.
Whitespotted Wedgefish
Rhynchobatus australiae Whitley, 1939.

Other Names: Whitespotted guitarfish, Whitespotted shovelnose ray, Giant guitarfish (English)

Distinguishing features:
A large wedgefish brownish grey above and white below; white spots on sides of body, around two black spots on head; a distinctly shovel-shaped snout, constricted in front of tip; anterior horn of antorbital cartilage short and ending posterior to front edges of nasal capsules; 1st dorsal fin origin well behind pelvic-fin origins, by a distance about 1.5 to 2.5% of total length.

Size:
To at least 187 cm, probably reaching to 200–300 cm; males mature at about 110-131 cm.

References:
Last *et al.* 2010; Compagno *et al.* 2005; Last & Compagno 1999.
Suborder Torpedinoidei
Gill, 1893. Electric rays.

Members of this suborder are characterized with a pair of large kidney-shaped electric organs which were developed from branchial muscles and located on either side of the head behind the eyes and at the base of the fin radials that is visible through the skin. Electric organs are normally used to stun small prey fishes and/or crustaceans but in large specimens can give a severe jolt. Most species are similar in appearance, having a broadly oval or subcircular disc with a reduced rostrum which is, truncate or wedge-shaped. They have small eyes, a small mouth, with or without strong labial cartilage, slender jaws, five gill openings, 0–2 dorsal fins, no anal fin, a stout shark-like tail, without stinging spines; caudal fin large but not shark-like, a soft and loose skin, without dermal denticles or thorns. They are viviparous, with their young hatching inside the uterus and born fully developed. They are benthic and may be found inshore or offshore.

Of the four families in this order, at least three are represented in the Philippines (i.e., the numbfishes of the family Narcinidae, sleeper rays of the family Narkidae and torpedo rays of the family Torpedinidae). Not recorded is the Family Hypnidae (coffin rays) which is known only in Australia.

Families of Torpedinoidei Occurring in the Philippines

<table>
<thead>
<tr>
<th>Family Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Family Torpedinidae</td>
<td>Bonaparte, 1838. Torpedo rays.</td>
</tr>
</tbody>
</table>
1a. Mouth broadly arcuate, bowlike, without labial folds and cartilages at ends; two dorsal fins, the 1st much larger than the 2nd; disc truncate anteriorly, transversely elliptical, not pear-shaped; tail not greatly reduced, caudal fin much higher than dorsal fin

.......................... Torpedinidae

1b. Mouth nearly transverse, with strong labial folds and cartilages at corners; 0–2 dorsal fins, when 2 are present, the 1st as large as the 2nd; disc longitudinally pear-shaped; tail greatly reduced, caudal fin about as high as dorsal fin

.......................... go to 2

2a. Snout with a broad, stiff, shovel-shaped rostral cartilage, readily felt by palpitation of the snout; a deep groove around mouth; teeth extending onto outer surfaces of upper and lower jaws in most species; two dorsal fins present

.......................... Narcinidae

2b. Snout with a narrow, rod-shaped rostral cartilage; a shallow groove around mouth; teeth not extending onto outer surfaces of upper and lower jaws; with a single fin dorsal fin (Narke) or none (Temera)

.......................... Narkinidae
Family Narcinidae
Gill, 1862. Numbfishes.

Numbfishes, as with other members of the subfamily Torpedinoidei (e.g., torpedo rays of the family Torpedinidae and sleeper rays of the family Narkidae), are characterized in having a pair of large kidney-shaped electric organs located at the base of the pectoral fins, on either side of the head. Additional similarities include small eyes, reduced rostrum, small mouth, slender jaws, no anal fin, stout shark-like tail, no stinging spines, and soft, loose and smooth skin.

Numbfishes are distinct in having a combination of characters such as: a less truncated and longer, more rounded snout that is supported by a broad, shovel-shaped rostral cartilage; an oval, rounded to shovel-shaped disc, with length equal or longer than its tail length; a transverse and narrow mouth, with strong labial folds and cartilages at corners and surrounded by a deep groove; two dorsal fins on tail, close together, with the 1st as large as the 2nd and originating partly over or behind the pelvic fin base; a relatively long and broad tail; and a caudal fin about as large as the pelvic fins.

Globally, at least 34 species belonging to three genera are reported. Four species are nominally listed in the Philippines (i.e., the Chinese numbfish Narcine lingula, the Darkfinned numbfish N. maculata, the Spotted numbfish N. timlei, and the Myanmar-Philippine form Narcine sp. H). Only one species, the Chinese numbfish N. lingula, is confirmed present while the two others (i.e., N. maculata and N. timlei) are possibly misidentifications and may have been confused with N. lingula or with the fourth species which is still undescribed, Narcine sp. nov.

List of species reported to occur in the Philippines:

✓ Narcine lingula Richardson, 1846. Chinese numbfish.

? Narcine maculata (Shaw, 1804). Darkfinned numbfish.

? Narcine timlei (Bloch & Schneider, 1801). Spotted numbfish

Chinese Numbfish

Narcine lingula Richardson, 1846

Other Names: Rough numbfish, Rough electric ray (English); *pating* (local)

Size:
To at least 33 cm; males and females mature at 24 and 27 cm and 25 cm, respectively.

Distinguishing features:
The Chinese numbfish is characterized by having numerous spots and blotches on back; undersides of pelvic and pectoral fins not dark edged; two similar-sized dorsal fins, 1st dorsal fin begins over posterior ends of pelvic fins; disc subcircular to oval, thick and flabby; eyes not embedded in skin; mouth subequal to or only slightly narrower than width between lateral edges of nostrils exposed part of tooth bands in jaws relatively narrow

References:
Family Narkidae
Fowler, 1934. Sleeper rays.

The sleeper rays used to be classified as a subfamily Narkinae of the family Narkidae. It has been elevated into a family rank. As with other members of the subfamily Torpedinoidei (e.g., numbfishes of the family Narcinidae and torpedo rays of the family Torpedinidae), sleeper rays are characterized in having a pair of large kidney-shaped electric organs located at the base of the pectoral fins, on either side of the head. Additional similarities include small eyes, reduced rostrum, small mouth, slender jaws, no anal fin, stout shark-like tail, no stinging spines, and soft, loose and smooth skin.

Sleeper rays are distinct in having a combination of characters such as: a shorter, broadly rounded snout that is supported by a narrow, rod-shaped rostral cartilage; an oval, rounded to pear-shaped disc, with length slightly longer than its tail length; a transverse straight and very narrow mouth, with strong labial folds and cartilages at corners and surrounded by a shallow groove; 0–1 dorsal fin, when present, the dorsal fin originates over or behind the pelvic fin base; a relatively long and broad tail; and a caudal fin which is much larger than the dorsal fin (when present) but subequal in size to the pelvic fins.

Globally, at least 14 species belonging to five genera are reported. Only two species in two genera (i.e., Narke – one single dorsal fin and Temera – no dorsal fin) are nominally listed in the Philippines but records are uncertain and needs further validation.

List of species reported to occur in the Philippines:

? Narke dipterygia (Bloch & Schneider, 1801). Spottail sleeper ray.
? Temera hardwickii (Bloch & Schneider, 1801). Finless sleeper ray.
Family Torpedinidae
Bonaparte, 1838. Torpedo rays.

Torpedo rays, as with numbfishes (family Narcidiae) and sleeper rays (family Narkidae), are distinct in having a pair of large kidney-shaped electric organs located on either side of the head. Additional similarities include small eyes, reduced rostrum, small mouth, slender jaws, no anal fin, and stout shark-like tail, no stinging spines, and soft, loose and smooth skin.

Torpedo rays generally differ from numbfishes and sleeper rays in having a combination of characters such as: a more truncated snout; a transversely elliptical disc with its length and width longer than its tail length; a strongly arched mouth but without labial folds, cartilages at ends, nor grooves around it; two dorsal fins on tail, close together, with the 1st much larger than the 2nd and originating partly over the pelvic fin base; a tail shorter than disc; and a caudal fin much larger than the dorsal fins, subequal in size to pelvic fins and usually with lateral skin folds.

Globally, at least 30 species belonging to one genus are reported. In the Philippines one species, the Spotted torpedo *Torpedo marmorata*, is nominally listed but needs to be confirmed. Two potentially new endemic species are reported to occur and need to be described. (*i.e.*, the Philippine spotted torpedo *Torpedo* sp. 1 and the Philippine offshore torpedo *Torpedo* sp. 2). No species account is available for these three species.

List of species reported to occur in the Philippines:

?- Torpedo marmorata Risso, 1810. Spotted torpedo.
U Torpedo sp. 1. Philippine spotted torpedo.
U Torpedo sp. 2. Philippine offshore torpedo.
CHIMAERAS

SUBCLASS HOLOCEPHALII
MÜLLER, 1835

ORDER CHIMAERIFORMES
GARMAN, 1877. MODERN CHIMAERAS OR SILVER SHARKS.

FAMILY CHIMAERIDAE
BONAPARTE, 1831. SHORTNOSE CHIMAERAS.

Chimaeras, also known as ratfishes, ghost sharks or silver sharks, are distinct for the following features: one gill opening on each side of head; prominent, large eyes but without spiracles; short rounded snout; a well-developed lateral line system of mucous canals and sensory pores on head and sides of the body and tail; a small ventral mouth connected to nostrils by a pair of deep grooves; two pairs of beak-like teeth on upper jaw and one pair in the lower jaw protruding from the mouth like a rat’s incisors; broad, leaf-shaped pectoral fins, with external fin web supported by fin rays; two dorsal fins, the 1st is triangular and erect with a slender, toxic spine while the 2nd is long and spineless, almost connected to caudal fin lobe; an elongated and tapering tail, with nearly equal sized dorsal and ventral lobes, often with a long terminal filament; anal fin may be present or absent; a naked skin, except for a few dermal denticles on back and along lateral-line canals of some species, on claspers and accessory appendages (= tentaculum) of males. In mature males, tentacula are present on head and pre-pelvic area.

Globally, at least 44 species belonging to six genera and three families (\emph{i.e.}, Family Callorhinchidae or elephant fishes; Family Rhinochimaeridae or longnose chimaeras and Family Chimaeridae or shortnose chimaeras) are known. In the Philippines, only Family Chimaeridae is known to occur, represented by at least three species in two genera, \textit{Chimaera} and \textit{Hydrolagus}. The two genera are differentiated from each other by the presence (\emph{i.e.}, \textit{Chimaera}) or absence (\textit{Hydrolagus}) of an anal fin. The systematics of these groups need further attention. \textit{Hydrolagus deani}, formerly recognized as an endemic Philippine species, is now considered a synonym of the Japanese \textit{H. mitsukurii}. One other species, \textit{Hydrolagus} sp. 1, may be new to science, possibly an endemic, and requires further taxonomic work.

LIST OF SPECIES REPORTED TO OCCUR IN THE PHILIPPINES:

- Chimaera phantasma Jordan & Snyder, 1900. Silver chimaera.
- N Hydrolagus mitsukurii (Jordan & Snyder; 1904). Mitsukurii's chimaera.
- U Hydrolagus sp.1. Philippines reticulate chimaera
Silver Chimaera

Chimaera phantasma Jordan & Snyder, 1900

Other Names: Ghost shark (English)

Size:
To at least 110 cm; males and females mature at 50 cm.

Distinguishing features:
The species has a silver body with poorly defined dark longitudinal stripes along its sides; snout blunt, fleshy and short; 1st dorsal-fin spine long, extending to near or beyond fin apex; 2nd dorsal fin dusky with a darker outer margin; tail whip-like; anal fin present, separated from caudal fin by a narrow notch. It is distinguished from all other members of the genus by a lateral line canal that is undulated along the entire length of the trunk as well as having preopercular and oral lateral line canals originating separately from the infraorbital canal with their origins separated by a distinct space.

References:
Glossary

acute sharp or pointed
adpressed pressed flat against the body
alar thorns paired patches of thorns on the outer disc of mature male skates
angular forming a distinct angle
anterior relating to front of or head end part of an object
antorbal the region of the front of the orbit
barbel a slender, tentacle-like sensory structure on the head
benthic living on the bottom of the ocean
bilobe having two lobes
blotch an enlarged area or patch that is different in colour to adjacent areas
brackish waters with a salinity between that of freshwater and saltwater
buccal pertaining to the mouth
bycatch component of the catch excluding targeted commercial fishes
cartilage a skeletal material consisting of a matrix of soft, white or translucent chondrin
caudal filament fine, flexible extensions of the caudal fin tip of chimaeras
caudal fin the tail fin
caudal keel a longitudinal fleshy material ridge alongside of the caudal peduncle
caudal peduncle the posterior part of the body supporting the caudal fin
cephalic lobe broad lobe on forehead of some rays
chevron a V-shaped pattern of adjoining lines
chondrichthyans group of fishes characterized by a cartilaginous skeleton; includes sharks, skates, rays and chimaeras
chondrin a horny, gelatinous protein substance that forms the matrix of cartilage
circumglobal distributed around the world within a certain latitudinal range
circumnarial around the nostrils
circumnarial fold a skin fold around the nostrils. Also called perinasal groove or circumnarial groove
claspers modified portions of pelvic fins in male chondrichthyans used for transferring sperm to female during mating
cloaca a common opening for digestive, urinary and reproductive tracts (also called vent)
common name the informal name for an animal, which often varies from place to place
compressed flattened laterally from side to side (compare with depressed)
concave curved inwards (opposite of convex)
convex arched, curved outwards (opposite of concave)
crenulate margins shaped into small rounded scallops
crescentic shaped like the new moon (roughly C-shaped)
crustaceans group of invertebrate animals including crabs, shrimps, prawns, lobsters and crayfish
cusp a projection on a tooth
cusplet a small cusp
denticles a small, tooth-like structure; plate-like scale of a cartilaginous fish
depressed flattened dorsoventral from top to bottom (compare with compressed)
dept height of body or head from top to bottom; also distance from sea surface to the bottom
dermal relating to the skin
dermal flaps outgrowths of skin
diphycercal caudal fin shape which is primitively symmetrical or pointed
direct length shortest distance between two points
disc the combined head, trunk and enlarged pectoral fins of those cartilaginous fishes with depressed bodies (e.g. stingrays)
distal region, border or point remote from the site of attachment (opposite of proximal)
dorsal relating to upper part or surface of back
dorsolateral positioned or orientated between dorsal and lateral surfaces
dusky slightly dark or greyish in color
elasmobranchs a subgroup of cartilaginous or chondrichthyan fishes including sharks, skates and rays
electric organ organ capable of delivering a mild electric shock
elitgate extended in length in relation to another object or drawn out
embedded within surrounding tissue
endemic native and restricted to a certain area
epipelagic upper part of the oceanic zone from the surface to about 200 m
estuaries partially enclosed body of water along the coast where freshwater from rivers and streams meets and mixes with salt water from the sea
estuarine living mainly in estuaries
facate curved like a sickle
family a group term for classifying organisms, containing one or more closely related genera
fauna the communities of animals in an area
fertilization the union of male and female cells to form a new individual
filter feeding filtering food particles from the water by means of the gill rakers
fin an external membranous appendage of a fish used in propelling, steering, or balancing the body in the water
fusiform: spindle-shaped, tapering at both ends

genus: a group term for classifying organisms, containing one or more related species

gestation: the period of development in the uterus from conception until birth

gill: organ for breathing or extracting oxygen from water

gill chambers: chambers holding the gills to store water for breathing

gill slit (gill opening): an opening (usually slit-like in cartilaginous fishes) on head that connects the gill chambers to the exterior

granulations: fine denticles

hammer-shaped: shaped with paired lateral expansions, like the head of a hammer or mallet

head: specialized anterior part of an animal on which the mouth and major sensory organs are located, part other than body and tail

head clasper: small appendage on the forehead of mature male chimaeroid fishes

holotype: the specimen used in the original description of a species

hyomandibular: refers to both to the hyoidean arch and the mandible or lower jaw; as, the hyomandibular bone or cartilage, a segment of the hyoid arch which connects the lower jaw with the skull in fishes

hyomandibular pores: line of enlarged pores extending posteriorly from the mouth corners

infraorbital: area below the eye

interdorsal: space on dorsal surface between 1st and 2nd dorsal fins

interdorsal ridge: ridge of skin between dorsal fins

interdorsal space: distance between the dorsal fins

internasal flap: fleshy flap extending between nostrils sometimes partly covering the mouth

interorbital space: an area on top of head between eyes

jaws: part of the mouth supporting the teeth

keel: a fleshy ridge; usually relates to a skinfold on the caudal peduncle

labial: pertaining to the lips

labial furrows: shallow grooves around the lips

lateral: referring to the sides

lateral ridges: fleshy expansions of sides of the body

lateral skin fold: fine fold of skin along the side of the body

lateral-line canal: part of the sensory network of chimaeras; appearing as a distinct line

life cycle: the generalized history of a species from birth to death

lip: fleshy outer portion of jaws

lip groove: see labial furrows

lobe: a rounded outgrowth

longitudinal: lengthwise (opposite of transverse)

lunate: shaped like a crescent moon

margin: edge or rim

median: relating to the middle of an object

mouth: opening through which food enters the alimentary canal

mucous canal: part of the sensory network of the head of chimaeras

multicuspid: a tooth or denticle with several cusps

naked: skin smooth, without denticles or thorns

nape: region of head above and behind eyes

narial: see nostrils

nasal curtain: see internasal flap

nasoral grooves: furrow connecting mouth to the nostrils

nasoral region: region around the nostrils and the mouth

nictitating eyelid: a transparent, moveable membrane or inner eyelid that protects eye

nomenclature: the systemic naming of animals and plants

nostril: external opening of the nasal organs

nuchal: pertaining to the nape

obtuse: broadly rounded or having a blunt end

oceanic: living in the open ocean

ocellus (pl. ocelli): en eye-like spot or marking with a marginal ring

ocular: relating to the eye

oophagy: method of matrotrophic embryonic nutrition in viviparous species where the embryo feed on unfertilized eggs in the uterus

oral: relating to the mouth

orbit: bony cavity in skull where eyeball is housed

papillae: a small fleshy projection

pearl thorn: nuchal thorn of stingrays shaped like an embedded pearl

pedicel: small stalk, usually of a denticle

peduncle: the narrow part of a fish’s body to which the caudal or tail fin is attached

perinasal groove: a skin fold around the nostrils. Also called circumnarial fold or circumnarial groove.

plain: uniformly colored, without a contrast in color pattern

population: a biological unit that represents the individuals of a species living in a certain area

pore: small secretory or sensory opening

posterior: relating to hind of or rear end of an object

precaudal pit: a transverse or longitudinal notch on a caudal peduncle just anterior to origin of caudal fin in some sharks

predator: feeding on other animals

pre-orbital: before (anterior to) the eye

pre-pelvic clasper: small, retractable appendages on each side just forward of the pelvic fins in mature male chimaeroid fishes

quadrangular: shaped with four distinct edges or margins

reticulated: divided into a network

reticulations: markings in a general form of a net

rhomboidal: diamond-shaped
rostral cartilage a gristly structure supporting the snout
rostral teeth tooth-like projections on the sides of the snout of sawfishes and saw sharks
rostrum (adj. rostral) a projecting snout
rounded margin evenly convex
saddle a blotch extending across dorsal surface from one side to another
school a close aggregation of fish swimming in association with each other
scientific name the formal binomial name of an organism consisting of the genus and species; only one valid scientific name exists per species
scythe-like shaped like a scythe; long narrowly curved
serrate saw-like
snout a part of the head in front of the eyes
species actually or potentially inter-breeding populations that are reproductively isolated from other populations
spine a sharp projecting point
spiracle a respiratory opening behind the eye in sharks and rays
spiracular fold fold of skin present on the hind margin of the spiracular openings in some ray species
spot a regularly shaped or rounded area of a color different to adjacent areas
squalene oil produced from the liver of some sharks
stellate star-shaped
stinging spine large, serrate bony structure on the tail of some rays
stripe a contrasting longitudinal pattern in the form of a line
subcircular almost circular
subequal almost equal
substrate the substance forming the bottom of the sea or ocean
subterminal position near but not at end of an object
supraorbital crests enlarged ridges above the eyes
symphysis (adj. symphysial) relating to the medial junction of either the upper or lower jaws
synonym (adj. synonymous) each of two or more scientific names of the same ran used to denote the same taxon
tail part of the fish between the cloaca and origin of the caudal fin
taxon any formal taxonomic unit or category or organisms (genus, species, etc.)
taxonomy the science of classification of plants and animals
teeth hard outgrowths on jaws, used for biting and masticating food
teleost large group containing most bony fishes
tendril a slender, curling barbel
terminal located at or forming the end of something
thorn large denticles on surface of a ray or skate
tip the extremity of a part of a fish
tooth rows horizontal rows of teeth in the jaws
total length longest length of a fish, from snout to tip to upper caudal tip or tail tip
transverse directed crosswise, across width (opposite of longitudinal)
trawl net fishing net which is dragged behind a boat
tricuspid tooth tooth with three cusps
trunk part of fish between head and tail; between 5th gill slit and cloaca
ventral relating to the lower part or surface
ANNEX 1
PHILIPPINE CARTILAGINOUS FISH SPECIES IN THE IUCN RED LIST, 2014
(The IUCN Red List 2014 (IUCN Red List URL, 2014) includes 165 cartilaginous fish species that are reported to occur in the Philippines but excludes species that are not evaluated (NE) as yet. The threat status and ranking is based on the IUCN Red List Categories and Criteria Version 2014.2 (www.iucnredlist.org). The presence of some of these species may need confirmation (please refer to the respective family or species accounts). Additional species may be added as levels of threats to the species become better understood.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Red List Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aetobatus narinari</td>
<td>Spotted eagle ray</td>
<td>NT</td>
</tr>
<tr>
<td>2</td>
<td>Aetomylaeus maculatus</td>
<td>Mottled eagle ray</td>
<td>EN A2d+3d+4d</td>
</tr>
<tr>
<td>3</td>
<td>Aetomylaeus niphophi</td>
<td>Banded eagle ray</td>
<td>VU A2d+3d+4d</td>
</tr>
<tr>
<td>4</td>
<td>Aetomylaeus vespertilo</td>
<td>Ornate eagle ray</td>
<td>EN A2bd+3d+4d</td>
</tr>
<tr>
<td>5</td>
<td>Alopias pelagicus</td>
<td>Pelagic thresher</td>
<td>VU A2d+4d</td>
</tr>
<tr>
<td>6</td>
<td>Alopias superciliosus</td>
<td>Bigeye thresher</td>
<td>VU A2bd</td>
</tr>
<tr>
<td>7</td>
<td>Alopias vulpinus</td>
<td>Common thresher</td>
<td>VU A2bd+3bd+4bd</td>
</tr>
<tr>
<td>8</td>
<td>Anoxypristis cuspida</td>
<td>Knifetooth sawfish</td>
<td>EN A2cd</td>
</tr>
<tr>
<td>9</td>
<td>Apristurus herkloti</td>
<td>Longfin catshark</td>
<td>DD</td>
</tr>
<tr>
<td>10</td>
<td>Apristurus longicepsulus</td>
<td>Longhead catshark</td>
<td>DD</td>
</tr>
<tr>
<td>11</td>
<td>Apristurus platyrhynchus</td>
<td>Borneo Catshark</td>
<td>DD</td>
</tr>
<tr>
<td>12</td>
<td>Atelomycterus marmoratus</td>
<td>Coral catshark</td>
<td>NT</td>
</tr>
<tr>
<td>13</td>
<td>Carcharhinus albimarginatus</td>
<td>Silvertip Shark</td>
<td>NT</td>
</tr>
<tr>
<td>14</td>
<td>Carcharhinus altimus</td>
<td>Bignose shark</td>
<td>DD</td>
</tr>
<tr>
<td>15</td>
<td>Carcharhinus amblyrhynchoides</td>
<td>Graceful shark</td>
<td>NT</td>
</tr>
<tr>
<td>16</td>
<td>Carcharhinus amblyrhynchos</td>
<td>Gray reef shark</td>
<td>NT</td>
</tr>
<tr>
<td>17</td>
<td>Carcharhinus borneensis</td>
<td>Borneo shark</td>
<td>EN C2a(lI)</td>
</tr>
<tr>
<td>18</td>
<td>Carcharhinus brevipinnia</td>
<td>Spinner shark</td>
<td>NT</td>
</tr>
<tr>
<td>19</td>
<td>Carcharhinus dussumieri</td>
<td>Whitecheek shark</td>
<td>NT</td>
</tr>
<tr>
<td>20</td>
<td>Carcharhinus falciformis</td>
<td>Silky shark</td>
<td>NT</td>
</tr>
<tr>
<td>21</td>
<td>Carcharhinus hemiodon</td>
<td>Pondicherry shark</td>
<td>CR A2acd; C2a(i)</td>
</tr>
<tr>
<td>22</td>
<td>Carcharhinus leucas</td>
<td>Bull shark</td>
<td>NT</td>
</tr>
<tr>
<td>23</td>
<td>Carcharhinus limbatis</td>
<td>Blacktip shark</td>
<td>NT</td>
</tr>
<tr>
<td>24</td>
<td>Carcharhinus longimanus</td>
<td>Oceanic whitetip shark</td>
<td>VU A2d+3d+4d</td>
</tr>
<tr>
<td>25</td>
<td>Carcharhinus macloti</td>
<td>Hardnose shark</td>
<td>NT</td>
</tr>
<tr>
<td>26</td>
<td>Carcharhinus melanopterus</td>
<td>Blacktip reef shark</td>
<td>NT</td>
</tr>
<tr>
<td>27</td>
<td>Carcharhinus sealei</td>
<td>Blackspot shark</td>
<td>NT</td>
</tr>
<tr>
<td>28</td>
<td>Carcharhinus sorrah</td>
<td>Spot-tail shark</td>
<td>NT</td>
</tr>
<tr>
<td>29</td>
<td>Carcharias taurus</td>
<td>Sand tiger shark</td>
<td>VU A2a+b+3d</td>
</tr>
<tr>
<td>30</td>
<td>Carcharodon carcharias</td>
<td>White shark</td>
<td>VU A2cd+3cd</td>
</tr>
<tr>
<td>31</td>
<td>Centrophorus granulosus</td>
<td>Gulper shark</td>
<td>VU A2abd+3d+4d</td>
</tr>
<tr>
<td>32</td>
<td>Centrophorus isodon</td>
<td>Black gulper shark</td>
<td>DD</td>
</tr>
<tr>
<td>33</td>
<td>Centrophorus lusitanicus</td>
<td>Lowfin gulper shark</td>
<td>VU A2bd+4bd</td>
</tr>
<tr>
<td>34</td>
<td>Centrophorus moluccensis</td>
<td>Smallfin gulper shark</td>
<td>DD</td>
</tr>
<tr>
<td>35</td>
<td>Centrophorus squamosus</td>
<td>Leavescale gulper shark</td>
<td>VU A2bd+3bd+4bd</td>
</tr>
<tr>
<td>36</td>
<td>Cephaloscyllium fasciatum</td>
<td>Reticulated swellshark</td>
<td>DD</td>
</tr>
<tr>
<td>37</td>
<td>Cephaloscyllium isabellum</td>
<td>Draughtsboard shark</td>
<td>LC</td>
</tr>
<tr>
<td>38</td>
<td>Cetorhinus maximus</td>
<td>Basking shark</td>
<td>VU A2a+d+3d</td>
</tr>
<tr>
<td>39</td>
<td>Chiloscyllium indicum</td>
<td>Slender bamboo shark</td>
<td>NT</td>
</tr>
<tr>
<td>40</td>
<td>Chiloscyllium griseum</td>
<td>Gray bamboo shark</td>
<td>NT</td>
</tr>
<tr>
<td>41</td>
<td>Chiloscyllium punctatum</td>
<td>Brownbarred bamboo shark</td>
<td>NT</td>
</tr>
<tr>
<td>42</td>
<td>Chiloscyllium plagiosum</td>
<td>Whitespotted bamboo shark</td>
<td>NT</td>
</tr>
<tr>
<td>43</td>
<td>Chimaera phantasma</td>
<td>Silver chimaera</td>
<td>DD</td>
</tr>
<tr>
<td>44</td>
<td>Cirrhoscyllium exploitum</td>
<td>Barbelthroat carpetshark</td>
<td>DD</td>
</tr>
<tr>
<td>45</td>
<td>Dasyatis akei</td>
<td>Whip stingray</td>
<td>NT</td>
</tr>
<tr>
<td>46</td>
<td>Dasyatis bennetti</td>
<td>Bennett's cowtail</td>
<td>DD</td>
</tr>
<tr>
<td>47</td>
<td>Dasyatis zugoi</td>
<td>Pale-edged stingray</td>
<td>NT</td>
</tr>
<tr>
<td>48</td>
<td>Deania calcea</td>
<td>Birdbeak dogfish</td>
<td>LC</td>
</tr>
<tr>
<td>No.</td>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Red List Ranking</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>49</td>
<td>Deania profundorum</td>
<td>Arrowhead dogfish</td>
<td>LC</td>
</tr>
<tr>
<td>50</td>
<td>Dipturus gigas</td>
<td>Giant skate</td>
<td>DD</td>
</tr>
<tr>
<td>51</td>
<td>Dipturus tengu</td>
<td>Goblin skate</td>
<td>DD</td>
</tr>
<tr>
<td>52</td>
<td>Echinorhinus cookei</td>
<td>Prickly shark</td>
<td>NT</td>
</tr>
<tr>
<td>53</td>
<td>Eridacnis radcliffe</td>
<td>Pygmy ribbontail catshark</td>
<td>LC</td>
</tr>
<tr>
<td>54</td>
<td>Etmopterus brachyurus</td>
<td>Shorttail lanternshark</td>
<td>DD</td>
</tr>
<tr>
<td>55</td>
<td>Etmopterus lucifer</td>
<td>Blackbelly lanternshark</td>
<td>LC</td>
</tr>
<tr>
<td>56</td>
<td>Euphrya blochii</td>
<td>Winghead shark</td>
<td>NT</td>
</tr>
<tr>
<td>57</td>
<td>Galeocerdo cuvier</td>
<td>Tiger shark</td>
<td>NT</td>
</tr>
<tr>
<td>58</td>
<td>Galeus eastmani</td>
<td>Gecko catshark</td>
<td>LC</td>
</tr>
<tr>
<td>59</td>
<td>Galeus sauteri</td>
<td>Taiwan sawtail catshark</td>
<td>DD</td>
</tr>
<tr>
<td>60</td>
<td>Galeus schultzi</td>
<td>Dwarf sawtail catshark</td>
<td>DD</td>
</tr>
<tr>
<td>61</td>
<td>Glaucolestegus typus</td>
<td>Giant shovelnose ray</td>
<td>VU A2bd+3bd+4bd</td>
</tr>
<tr>
<td>62</td>
<td>Glaucolestegus granulatus</td>
<td>Sharpnose guitarfish</td>
<td>VU A2bd+3d+4d</td>
</tr>
<tr>
<td>63</td>
<td>Glaucolestegus halavi</td>
<td>Halavi guitarfish</td>
<td>DD</td>
</tr>
<tr>
<td>64</td>
<td>Gymnura micrura</td>
<td>Smooth butterfly ray</td>
<td>DD</td>
</tr>
<tr>
<td>65</td>
<td>Gymnura poecilura</td>
<td>Longtail butterfly ray</td>
<td>NT</td>
</tr>
<tr>
<td>66</td>
<td>Gymnura zonura</td>
<td>Zonetail butterfly ray</td>
<td>VU A2d+3d+4d</td>
</tr>
<tr>
<td>67</td>
<td>Halaelurus maculosus</td>
<td>Indonesian speckled catshark</td>
<td>LC</td>
</tr>
<tr>
<td>68</td>
<td>Hemigaleus microstoma</td>
<td>Sicklefin weasel shark</td>
<td>VU A2d+3d+4d</td>
</tr>
<tr>
<td>69</td>
<td>Hemipristis elongata</td>
<td>Snaggletooth shark</td>
<td>VU A2bd+3bd+4bd</td>
</tr>
<tr>
<td>70</td>
<td>Hemitriakis lescomeriptera</td>
<td>Whitefin tope shark</td>
<td>EN B1.ab(iii,v); C2a(ii)</td>
</tr>
<tr>
<td>71</td>
<td>Heptanchias perlo</td>
<td>Sharpnose sevengill shark</td>
<td>NT</td>
</tr>
<tr>
<td>72</td>
<td>Heterodontus zebra</td>
<td>Zebra bullhead shark</td>
<td>LC</td>
</tr>
<tr>
<td>73</td>
<td>Hexanchus griseus</td>
<td>Bluntnose sigill shark</td>
<td>NT</td>
</tr>
<tr>
<td>74</td>
<td>Hexanchus nakamurai</td>
<td>Bigeyed sigill shark</td>
<td>DD</td>
</tr>
<tr>
<td>75</td>
<td>Hexatrygon bickelli</td>
<td>Sigill stingray</td>
<td>LC</td>
</tr>
<tr>
<td>76</td>
<td>Himantura fai</td>
<td>Pink whipray</td>
<td>LC</td>
</tr>
<tr>
<td>77</td>
<td>Himantura gerrardi</td>
<td>Sharpnose whipray</td>
<td>VU A2bd+3bd</td>
</tr>
<tr>
<td>78</td>
<td>Himantura granulata</td>
<td>Mangrove whipray</td>
<td>NT</td>
</tr>
<tr>
<td>79</td>
<td>Himantura imbricata</td>
<td>Scaly whipray</td>
<td>DD</td>
</tr>
<tr>
<td>80</td>
<td>Himantura jenkinsii</td>
<td>Golden whipray</td>
<td>LC</td>
</tr>
<tr>
<td>81</td>
<td>Himantura leopolda</td>
<td>Leopard whipray</td>
<td>VU A2cd+3cd+4cd</td>
</tr>
<tr>
<td>82</td>
<td>Himantura uarnacoides</td>
<td>Whitenoise whipray</td>
<td>VU A2bcd+3bcd+4bcd</td>
</tr>
<tr>
<td>83</td>
<td>Himantura uarnak</td>
<td>Reticulate whipray</td>
<td>VU A2bd+3bd+4bd</td>
</tr>
<tr>
<td>84</td>
<td>Himantura undulata</td>
<td>Bleeker's variegated whipray</td>
<td>VU A2cd+3cd+4cd</td>
</tr>
<tr>
<td>85</td>
<td>Himantura walga</td>
<td>Dwarf whipray</td>
<td>NT</td>
</tr>
<tr>
<td>86</td>
<td>Hydrologus mitsukuri</td>
<td>Mitsukuri's chimaena</td>
<td>DD</td>
</tr>
<tr>
<td>87</td>
<td>Iago garricki</td>
<td>Longnosed houndshark</td>
<td>LC</td>
</tr>
<tr>
<td>88</td>
<td>Insentiraja subtilispinosa</td>
<td>Philippine looseskin skate</td>
<td>LC</td>
</tr>
<tr>
<td>89</td>
<td>Isistius brasilensis</td>
<td>Cookiecutter shark</td>
<td>LC</td>
</tr>
<tr>
<td>90</td>
<td>Isurus oxyrinchus</td>
<td>Shortfin mako</td>
<td>VU A2abd+3bd+4abd</td>
</tr>
<tr>
<td>91</td>
<td>Isurus paucus</td>
<td>Longfin mako</td>
<td>VU A2bd+3d+4bd</td>
</tr>
<tr>
<td>92</td>
<td>Loxodon macrorhinus</td>
<td>Sliteye shark</td>
<td>LC</td>
</tr>
<tr>
<td>93</td>
<td>Manta alfredi</td>
<td>Alfred manta</td>
<td>VU A2abd+3bd+4abd</td>
</tr>
<tr>
<td>94</td>
<td>Manta birostris</td>
<td>Giant manta</td>
<td>VU A2abd+3bd+4abd</td>
</tr>
<tr>
<td>95</td>
<td>Megachasma pelagios</td>
<td>Megamouth shark</td>
<td>DD</td>
</tr>
<tr>
<td>96</td>
<td>Mobula eregooodootkeee</td>
<td>Longhorned mobula</td>
<td>NT</td>
</tr>
<tr>
<td>97</td>
<td>Mobula japonica</td>
<td>Spinetail mobula</td>
<td>NT</td>
</tr>
<tr>
<td>98</td>
<td>Mobula kuhlii</td>
<td>Shortfin devil ray</td>
<td>DD</td>
</tr>
<tr>
<td>99</td>
<td>Mobula tarapacana</td>
<td>Chilean devil ray</td>
<td>DD</td>
</tr>
<tr>
<td>100</td>
<td>Mobula thurstoni</td>
<td>Smoothtail mobula</td>
<td>NT</td>
</tr>
<tr>
<td>101</td>
<td>Mustelus griseus</td>
<td>Spotless smooth-hound</td>
<td>DD</td>
</tr>
<tr>
<td>102</td>
<td>Mustelus manazo</td>
<td>Starspotted smooth-hound</td>
<td>DD</td>
</tr>
<tr>
<td>103</td>
<td>Myliobatis tabijei</td>
<td>Japanese eagle ray</td>
<td>DD</td>
</tr>
<tr>
<td>No.</td>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Red List Ranking</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>104</td>
<td>Narcine lingula</td>
<td>Chinese numbfish</td>
<td>DD</td>
</tr>
<tr>
<td>105</td>
<td>Narcine maculata</td>
<td>Darkfinned numbfish</td>
<td>DD</td>
</tr>
<tr>
<td>106</td>
<td>Narcine timlei</td>
<td>Spotted numbfish</td>
<td>DD</td>
</tr>
<tr>
<td>107</td>
<td>Narke dipterygia</td>
<td>Spottail sleeper ray</td>
<td>DD</td>
</tr>
<tr>
<td>108</td>
<td>Nebrinius ferrugineus</td>
<td>Twany nurse shark</td>
<td>VU A2abcd+3cd+4abcd</td>
</tr>
<tr>
<td>109</td>
<td>Negaprion acodens</td>
<td>Sharptooth lemon shark</td>
<td>VU A2abcd+3bcd+4abcd</td>
</tr>
<tr>
<td>110</td>
<td>Neotrygon kahlii</td>
<td>Blue spotted stingray</td>
<td>DD</td>
</tr>
<tr>
<td>111</td>
<td>Okamejei bosemanni</td>
<td>Black sand skate</td>
<td>DD</td>
</tr>
<tr>
<td>112</td>
<td>Okamejei hollandi</td>
<td>Yellow-spotted skate</td>
<td>DD</td>
</tr>
<tr>
<td>113</td>
<td>Okamejei kenoeji</td>
<td>Spiny rasp skate</td>
<td>DD</td>
</tr>
<tr>
<td>114</td>
<td>Okamejei meerdervoortii</td>
<td>Eastern cowtail stingray</td>
<td>DD</td>
</tr>
<tr>
<td>115</td>
<td>Orectolobus japonicus</td>
<td>Japanese wobbegong</td>
<td>DD</td>
</tr>
<tr>
<td>116</td>
<td>Orectolobus ornatus</td>
<td>Ornate wobbegong</td>
<td>NT</td>
</tr>
<tr>
<td>117</td>
<td>Parmaturus melanobranchus</td>
<td>Blackgill catshark</td>
<td>DD</td>
</tr>
<tr>
<td>118</td>
<td>Pastinachus sephen</td>
<td>Cowtail stingray</td>
<td>DD</td>
</tr>
<tr>
<td>119</td>
<td>Pentanchus profundicola</td>
<td>Onefin catshark</td>
<td>DD</td>
</tr>
<tr>
<td>120</td>
<td>Platyhina sinensis</td>
<td>Fan ray</td>
<td>VU A4bcd</td>
</tr>
<tr>
<td>121</td>
<td>Plesiobatis daviesi</td>
<td>Deepwater stingray</td>
<td>LC</td>
</tr>
<tr>
<td>122</td>
<td>Prionace glauca</td>
<td>Blue shark</td>
<td>NT</td>
</tr>
<tr>
<td>123</td>
<td>Pristiphorus japonicus</td>
<td>Japanese sawshark</td>
<td>DD</td>
</tr>
<tr>
<td>124</td>
<td>Pristis pectinata</td>
<td>Smalltooth sawfish</td>
<td>CR A2cd</td>
</tr>
<tr>
<td>125</td>
<td>Pristis pristis</td>
<td>Large tooth Sawfish</td>
<td>CR A2cd</td>
</tr>
<tr>
<td>126</td>
<td>Pristis zisron</td>
<td>Green sawfish</td>
<td>CR A2cd</td>
</tr>
<tr>
<td>127</td>
<td>Pseudocarcharias kamoharai</td>
<td>Crocodile shark</td>
<td>NT</td>
</tr>
<tr>
<td>128</td>
<td>Rhina acentlostoma</td>
<td>Shark ray</td>
<td>VU A2bd+3bd+4bd</td>
</tr>
<tr>
<td>129</td>
<td>Rhincodon typus</td>
<td>Whale shark</td>
<td>VU A2bd+3d</td>
</tr>
<tr>
<td>130</td>
<td>Rhinobatos formosensis</td>
<td>Taiwan guitarfish</td>
<td>VU A2+3d+4d</td>
</tr>
<tr>
<td>131</td>
<td>Rhinobatos schlegelii</td>
<td>Brown guitarfish</td>
<td>DD</td>
</tr>
<tr>
<td>132</td>
<td>Rhinoptera javanica</td>
<td>Javanese cow nose ray</td>
<td>VU A2+3cd+4cd</td>
</tr>
<tr>
<td>133</td>
<td>Rhizoprionodon acutus</td>
<td>Milk shark</td>
<td>LC</td>
</tr>
<tr>
<td>134</td>
<td>Rhyndobatus australiae</td>
<td>Whitespotted wedgefish</td>
<td>VU A2bd+3bd+4bd</td>
</tr>
<tr>
<td>135</td>
<td>Rhyndobatus laevis</td>
<td>Smoothnose wedgefish</td>
<td>VU A2bd+3bd+4bd</td>
</tr>
<tr>
<td>136</td>
<td>Scyliorhinus macrorhynchos</td>
<td>Pacific spadenose shark</td>
<td>NE</td>
</tr>
<tr>
<td>137</td>
<td>Scyliorhinus garmani</td>
<td>Brownspotted catshark</td>
<td>DD</td>
</tr>
<tr>
<td>138</td>
<td>Scyliorhinus torazame</td>
<td>Cloudy catshark</td>
<td>LC</td>
</tr>
<tr>
<td>139</td>
<td>Sinobatis borneensis</td>
<td>Borneo leg skate</td>
<td>LC</td>
</tr>
<tr>
<td>140</td>
<td>Sphyra lewini</td>
<td>Scaled hammerhead</td>
<td>EN A2bd+4bd</td>
</tr>
<tr>
<td>141</td>
<td>Sphyra mokarran</td>
<td>Great hammerhead</td>
<td>EN A2bd+4bd</td>
</tr>
<tr>
<td>142</td>
<td>Sphyra tiburo</td>
<td>Bonnethead shark</td>
<td>LC</td>
</tr>
<tr>
<td>143</td>
<td>Sphyra zygaena</td>
<td>Smooth hammerhead</td>
<td>VU A2bd+3bd+4bd</td>
</tr>
<tr>
<td>144</td>
<td>Squaliolus aliae</td>
<td>Smalleye pygmy shark</td>
<td>LC</td>
</tr>
<tr>
<td>145</td>
<td>Squaliolus laticaudus</td>
<td>Spined pygmy shark</td>
<td>LC</td>
</tr>
<tr>
<td>146</td>
<td>Squalus japonicus</td>
<td>Japanese spurdog</td>
<td>DD</td>
</tr>
<tr>
<td>147</td>
<td>Squalus megalops</td>
<td>Shortnose spurdog</td>
<td>DD</td>
</tr>
<tr>
<td>148</td>
<td>Squalus mitsukuri</td>
<td>Shortspine spurdog</td>
<td>DD</td>
</tr>
<tr>
<td>149</td>
<td>Squalus montalbani</td>
<td>Indonesian greeneye spurdog</td>
<td>VU A2bd+4bd</td>
</tr>
<tr>
<td>150</td>
<td>Squalus nasutus</td>
<td>Western longnose spurdog</td>
<td>DD</td>
</tr>
<tr>
<td>151</td>
<td>Squatina japonica</td>
<td>Japanese angelshark</td>
<td>VU A2+4d</td>
</tr>
<tr>
<td>152</td>
<td>Stegostoma fasciatum</td>
<td>Zebra shark</td>
<td>VU A2abcd+3cd+4abcd</td>
</tr>
<tr>
<td>153</td>
<td>Taeniura lymma</td>
<td>Bluespotted ribbontail ray</td>
<td>NT</td>
</tr>
<tr>
<td>154</td>
<td>Taeniura meyeri</td>
<td>Round ribbontail ray</td>
<td>VU A2+3d+4ad</td>
</tr>
<tr>
<td>155</td>
<td>Temera hardwickei</td>
<td>Finless sleeper ray</td>
<td>VU A4 d</td>
</tr>
<tr>
<td>156</td>
<td>Trienodon obesus</td>
<td>Whiterip reef shark</td>
<td>NT</td>
</tr>
<tr>
<td>157</td>
<td>Triakis scylium</td>
<td>Banded houndshark</td>
<td>LC</td>
</tr>
<tr>
<td>158</td>
<td>Urogyninus asperrimus</td>
<td>Porcupine ray</td>
<td>VU A2bd</td>
</tr>
</tbody>
</table>
CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora) is an international agreement between governments. Its aim is to ensure that international trade in specimens of wild animals and plants does not threaten their survival. CITES works by subjecting international trade in specimens of selected species to certain controls.

The species covered by CITES are listed in three Appendices, according to the degree of protection they need. Appendix I includes species threatened with extinction. Trade in specimens of these species is permitted only in exceptional circumstances. Appendix II includes species not necessarily threatened with extinction, but in which trade must be controlled in order to avoid utilization incompatible with their survival. Appendix III contains species that are protected in at least one country, which has asked other CITES Parties for assistance in controlling the trade. (See list: http://cites.org/sites/default/files/eng/app/2014/E-Appendices-2014-09-14.pdf).

All species listed in CITES Appendices are protected under the Republic Act 8550, otherwise known as the Philippine Fisheries Code of 1998.

ANNEX 2
CARTILAGINOUS FISH SPECIES IN THE CITES APPENDICES (CITES.ORG)

<table>
<thead>
<tr>
<th>TAXA/Species Name</th>
<th>Common Name</th>
<th>CITES Appendices</th>
<th>Notes on Philippine Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARCHARHINIFORMES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcharhinidae (Requiem sharks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcharhinus longimanus</td>
<td>Oceanic whitetip shark</td>
<td>Appendix II</td>
<td>Reported to occur</td>
</tr>
<tr>
<td>Sphyrnidae (Hammerhead sharks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphyrna lewini</td>
<td>Scalloped hammerhead</td>
<td>Appendix II</td>
<td>Reported to occur</td>
</tr>
<tr>
<td>Sphyrna mokarran</td>
<td>Great hammerhead</td>
<td>Appendix II</td>
<td>Reported to occur</td>
</tr>
<tr>
<td>Sphyrna zygaena</td>
<td>Smooth hammerhead</td>
<td>Appendix II</td>
<td>Reported to occur</td>
</tr>
<tr>
<td>LAMNIFORMES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cetorhinidae (Basking shark)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cetorhinus maximus</td>
<td>Basking shark</td>
<td>Appendix II</td>
<td>Reported to occur but may be vagrant</td>
</tr>
<tr>
<td>Lamnidae (Mackerel sharks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcharodon carcharias</td>
<td>White shark</td>
<td>Appendix II</td>
<td>Reported to occur</td>
</tr>
<tr>
<td>Lamna nasus</td>
<td>Porbeagle shark</td>
<td>Appendix II</td>
<td>Not reported</td>
</tr>
<tr>
<td>ORECTOLOBIFORMES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinodontidae (Whale shark)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinodon typus</td>
<td>Whale shark</td>
<td>Appendix II</td>
<td>Reported to occur</td>
</tr>
<tr>
<td>PRISTIFORMES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristidae Sawfishes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristidae spp.</td>
<td>Sawfishes</td>
<td>Appendix I</td>
<td>Species reported to occur: Pristis pectinata (Smalltooth sawfish), Pristis pristis (Largetooth sawfish), and Pristis zijsron (Green sawfish)</td>
</tr>
<tr>
<td>RAJIFORMES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobulidae (Mobulid rays)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manta spp.</td>
<td>Mobulid ray</td>
<td>Appendix II</td>
<td>Species reported to occur: Manta alfredi (Alfred manta) and Manta birostris (Giant manta)</td>
</tr>
</tbody>
</table>
PATING KA BA? An Identification Guide to Sharks, Batoids and Chimaeras of the Philippines

This book is the first identification guide on cartilaginous fishes of the Philippines, currently produced based on the recommendations of the Philippine government under the 2009 National Plan of Action for the Conservation and Management of Sharks in the Philippines. This book compiles best available photos of whole or parts of a landed shark, skate, ray or chimaera in landing or market sites primarily collected by the project team from Silliman University Institute of Environmental and Marine Sciences (SU-IEMS) during the 1998-2001 WWF Elasmobranch Biodiversity Project, with contributions from field staff of the Bureau of Fisheries and Aquatic Resources – National Fisheries Research Institute (BFAR-NFRDI) under the National Stock Assessment Project (NSAP) and various partners and volunteers from the diving and conservation community.

This publication is the result of the collaborative effort of the Bureau of Fisheries and Aquatic Resources – National Fisheries Research Institute (NFRDI) and the National Stock Assessment Project (NSAP), Silliman University Institute of Environmental and Marine Sciences (SU-IEMS), FishBase Information and Research Group (FIN) and the Marine Wildlife Watch of the Philippines (MWWP), with support from the Adaptation to Climate Change in Coastal Areas Project (ACCCoast) project of the Department of Environment and Natural Resources - Biodiversity Management Bureau (DENR-BMB) and GIZ-Philippines.

BUREAU OF FISHERIES AND AQUATIC RESOURCES - NATIONAL FISHERIES RESEARCH AND DEVELOPMENT INSTITUTE (BFAR-NFRDI)

The Bureau of Fisheries and Aquatic Resources is the government agency under the Department of Agriculture (http://www.bfar.da.gov.ph) responsible for the development, improvement, management and conservation of the country’s fisheries and aquatic resources. It was reconstituted as a line bureau by virtue of Republic Act No. 8550 (Philippine Fisheries Code of 1998). The National Fisheries Research and Development Institute (http://nfrdi.da.gov.ph/) is the primary research arm of BFAR with a mission to generate scientific information, technologies and knowledge that will respond to the needs of the fisheries industry and fisherfolk and to serve as basis for sustainable fisheries management and policy formulation.

SILLIMAN UNIVERSITY
INSTITUTE OF ENVIRONMENTAL AND MARINE SCIENCES (SU-IEMS)

The Silliman University Institute of Environmental and Marine Sciences (http://su.edu.ph/iems), formerly known as the Silliman University Marine Laboratory (SUML) and housed in the Dr. Angel C. Alcala Environment and Marine Science Laboratories in Dumaguete, was established as a research facility of the University in 1974. Pioneering research in community-based biodiversity conservation, coastal resource management and marine protected areas, its vision is to become a global leader in environmental and marine research and education.

FISHBASE INFORMATION AND RESEARCH GROUP, INC. (FIN)

The FishBase Information and Research Group, Inc. (http://www.fishbase.org/) is a domestic non-stock, non-profit, non-governmental organization established in the Philippines in September 2003. FIN has been created and is backed by the FishBase Consortium, a group of nine international Institutes and Organizations that is providing long-term support for FishBase (www.fishbase.org).

MARINE WILDLIFE WATCH OF THE PHILIPPINES (MWWP)

Marine Wildlife Watch of the Philippines (http://mwwpphilippines.org), a non-profit, non-stock organization that aims to support the conservation and protection of marine wildlife species and their habitats in the Philippines, is involved in various projects and activities that aim for a better appreciation of the marine environment, its ecological processes, and how it affects us all in the local context.

ADAPTATION TO CLIMATE CHANGE IN COASTAL AREAS PROJECT (ACCCOAST)

The ACCCoast project (http://acccoast.bmb.gov.ph/) is a collaboration of the Department of Environment and Natural Resources - Biodiversity Management Bureau (DENR-BMB) under the Coastal and Marine Division (CMD) and GIZ-Philippines with various partners and stakeholders focused on the protection and rehabilitation of coastal ecosystems for an improved climate change adaptation in the Philippines as a contribution to the Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security. This project is part of the International Climate Initiative (ICI). The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) supports this initiative on the basis of a decision adopted by the German Bundestag. For more information see http://www.international-climate-initiative.com.